Endpoint maximal and smoothing estimates for Schrödinger equations

For α > 1 we consider the initial value problem for the dispersive equation i∂tu + (–Δ) α/2 u = 0. We prove an endpoint Lp inequality for the maximal function with initial values in Lp -Sobolev spaces, for p ∈ (2 + 4/(d + 1), ∞). This strengthens the fixed time estimates due to Fefferman and Stei...

Full description

Saved in:
Bibliographic Details
Published inJournal für die reine und angewandte Mathematik Vol. 2010; no. 640; pp. 47 - 66
Main Authors Rogers, Keith M., Seeger, Andreas
Format Journal Article
LanguageEnglish
Published Walter de Gruyter GmbH & Co. KG 01.03.2010
Online AccessGet full text

Cover

Loading…
More Information
Summary:For α > 1 we consider the initial value problem for the dispersive equation i∂tu + (–Δ) α/2 u = 0. We prove an endpoint Lp inequality for the maximal function with initial values in Lp -Sobolev spaces, for p ∈ (2 + 4/(d + 1), ∞). This strengthens the fixed time estimates due to Fefferman and Stein, and Miyachi. As an essential tool we establish sharp Lp space-time estimates (local in time) for the same range of p.
Bibliography:ArticleID:crll.2010.640.47
istex:AFEBB64781B165892FCDE063F3034CC95372C391
ark:/67375/QT4-422DS3BS-1
crelle.2010.018.pdf
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle.2010.018