Endpoint maximal and smoothing estimates for Schrödinger equations
For α > 1 we consider the initial value problem for the dispersive equation i∂tu + (–Δ) α/2 u = 0. We prove an endpoint Lp inequality for the maximal function with initial values in Lp -Sobolev spaces, for p ∈ (2 + 4/(d + 1), ∞). This strengthens the fixed time estimates due to Fefferman and Stei...
Saved in:
Published in | Journal für die reine und angewandte Mathematik Vol. 2010; no. 640; pp. 47 - 66 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Walter de Gruyter GmbH & Co. KG
01.03.2010
|
Online Access | Get full text |
Cover
Loading…
Summary: | For α > 1 we consider the initial value problem for the dispersive equation i∂tu + (–Δ) α/2 u = 0. We prove an endpoint Lp inequality for the maximal function with initial values in Lp -Sobolev spaces, for p ∈ (2 + 4/(d + 1), ∞). This strengthens the fixed time estimates due to Fefferman and Stein, and Miyachi. As an essential tool we establish sharp Lp space-time estimates (local in time) for the same range of p. |
---|---|
Bibliography: | ArticleID:crll.2010.640.47 istex:AFEBB64781B165892FCDE063F3034CC95372C391 ark:/67375/QT4-422DS3BS-1 crelle.2010.018.pdf |
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle.2010.018 |