Tensile and Fracture Properties of 15 vol% SiCp/2009Al Composites Fabricated by Hot Isostatic Pressing and Hot Extrusion Processes

15 vol% silicon carbide particle (SiCp)-reinforced 2009A1 matrix (15 vol% SiCp/2009A1) composites were fabricated by hot isostatic pressing (HIP) and hot extrusion processes. The tensile and fracture properties of 15 vol% SiCp/ 2009Al were studied. The results showed that hot extrusion increased the...

Full description

Saved in:
Bibliographic Details
Published inActa metallurgica sinica : English letters Vol. 27; no. 5; pp. 875 - 884
Main Authors Nie, Junhui, Fan, Jianzhong, Zhang, Shaoming, Wei, Shaohua, Zuo, Tao, Ma, Zili, Xiang, Zhaobing
Format Journal Article
LanguageEnglish
Published Heidelberg The Chinese Society for Metals 01.10.2014
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:15 vol% silicon carbide particle (SiCp)-reinforced 2009A1 matrix (15 vol% SiCp/2009A1) composites were fabricated by hot isostatic pressing (HIP) and hot extrusion processes. The tensile and fracture properties of 15 vol% SiCp/ 2009Al were studied. The results showed that hot extrusion increased the ultimate tensile strength (UTS), yield strength (YS), elongation (EL), reduction in area (RA), and fracture toughness of the composites. The heat treatment resulted in the increase in UTS, YS, and fracture toughness, but a decrease in EL and RA. Both hot extrusion and heat treatment had negligible effects on elastic modulus (E). With the increase of SiCp size, the UTS, YS, and E decreased, but the EL and RA increased. The fracture toughness increased first and then decreased with increasing SiCp size, and when the SiCp size was about 7 μm, the composites obtained the maximum fracture toughness value of 31.74 MPa m^1/2.
Bibliography:Aluminum matrix composites; Silicon carbide; Tensile properties; Facture toughness;Particle size
21-1361/TG
15 vol% silicon carbide particle (SiCp)-reinforced 2009A1 matrix (15 vol% SiCp/2009A1) composites were fabricated by hot isostatic pressing (HIP) and hot extrusion processes. The tensile and fracture properties of 15 vol% SiCp/ 2009Al were studied. The results showed that hot extrusion increased the ultimate tensile strength (UTS), yield strength (YS), elongation (EL), reduction in area (RA), and fracture toughness of the composites. The heat treatment resulted in the increase in UTS, YS, and fracture toughness, but a decrease in EL and RA. Both hot extrusion and heat treatment had negligible effects on elastic modulus (E). With the increase of SiCp size, the UTS, YS, and E decreased, but the EL and RA increased. The fracture toughness increased first and then decreased with increasing SiCp size, and when the SiCp size was about 7 μm, the composites obtained the maximum fracture toughness value of 31.74 MPa m^1/2.
ISSN:1006-7191
2194-1289
DOI:10.1007/s40195-014-0127-2