Environmental microcystin exposure triggers the poor prognosis of prostate cancer: Evidence from case-control, animal, and in vitro studies

Microcystin-leucine-arginine (MC-LR) is positively linked with multiple cancers in humans. However, the association between MC-LR and the risk and prognosis of prostate cancer has not been conducted in epidemiological studies. No reported studies have linked MC-LR exposure to the poor prognosis of p...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental sciences (China) Vol. 127; pp. 69 - 81
Main Authors Pan, Chun, Qin, Haixiang, Yan, Minghao, Qiu, Xuefeng, Gong, Wenyue, Luo, Wenxin, Guo, Hongqian, Han, Xiaodong
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Microcystin-leucine-arginine (MC-LR) is positively linked with multiple cancers in humans. However, the association between MC-LR and the risk and prognosis of prostate cancer has not been conducted in epidemiological studies. No reported studies have linked MC-LR exposure to the poor prognosis of prostate cancer by conducting experimental studies. The content of MC-LR was detected in most of the aquatic food in wet markets and supermarkets in Nanjing and posed a health risk for consumers. MC-LR levels in both prostate cancer tissues and serum were significantly higher than controls. The adjusted odds ratio (OR) for prostate cancer risk by serum MC-LR was 1.75 (95%CI: 1.21-2.52) in the whole subjects, and a positive correlation between MC-LR and advanced tumor stage was observed. Survival curve analysis indicated patients with higher MC-LR levels in tissues exhibited poorer overall survival. Human, animal, and cell studies confirmed that MC-LR exposure increases the expression of estrogen receptor-α (ERα) and promotes epithelial-mesenchymal transition (EMT) in prostate cancer. Moreover, MC-LR-induced decreased E-cadherin levels, increased vimentin levels, and increased migratory and invasive capacities of prostate cancer cells were markedly suppressed upon ERα knockdown. MC-LR-induced xenograft tumor growth and lung metastasis in BALB/c nude mice can be effectively alleviated with ERα knockdown. Our data demonstrated that MC-LR upregulated vimentin and downregulated E-cadherin through activating ERα, promoting migration and invasion of prostate cancer cells. Our findings highlight the role of MC-LR in prostate cancer, providing new perspectives to understand MC-LR-induced prostatic toxicity. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1001-0742
1878-7320
DOI:10.1016/j.jes.2022.05.051