Non-linear response of a magneto-elastic translating beam with prismatic joint for higher resonance conditions
The non-linear response of a magneto-elastic translating beam having prismatic joint for higher resonance conditions is studied. A periodically varying transverse magnetic field is applied to the system. Two frequencies of prismatic motion and oscillating transverse magnetic field are implemented to...
Saved in:
Published in | International journal of non-linear mechanics Vol. 46; no. 5; pp. 685 - 692 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The non-linear response of a magneto-elastic translating beam having prismatic joint for higher resonance conditions is studied. A periodically varying transverse magnetic field is applied to the system. Two frequencies of prismatic motion and oscillating transverse magnetic field are implemented to the system. The method of multiple scales as one of the perturbation techniques is used to derive two first order ordinary differential equations that govern the time variation of the amplitude and phase of the response. Then a stability analysis is conducted for subharmonic resonance and simultaneous resonance conditions. A parametric study is performed to investigate the effect of magnetic field strength, amplitude of prismatic motion, damping and payload mass on the frequency response curves for both the resonance conditions. The catastrophic failure of the system may occur due to the presence of saddle-node and pitchfork bifurcations. The results obtained by method of multiple scales are compared with those obtained by numerically integrating the reduced equations and are found to be in good agreement. The developed results can be applied to control the vibration of a beam with prismatic joint subjected to magnetic field for third order subharmonic resonance and simultaneous resonance conditions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0020-7462 1878-5638 |
DOI: | 10.1016/j.ijnonlinmec.2011.01.002 |