Coordinate descent algorithms

Coordinate descent algorithms solve optimization problems by successively performing approximate minimization along coordinate directions or coordinate hyperplanes. They have been used in applications for many years, and their popularity continues to grow because of their usefulness in data analysis...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 151; no. 1; pp. 3 - 34
Main Author Wright, Stephen J.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Coordinate descent algorithms solve optimization problems by successively performing approximate minimization along coordinate directions or coordinate hyperplanes. They have been used in applications for many years, and their popularity continues to grow because of their usefulness in data analysis, machine learning, and other areas of current interest. This paper describes the fundamentals of the coordinate descent approach, together with variants and extensions and their convergence properties, mostly with reference to convex objectives. We pay particular attention to a certain problem structure that arises frequently in machine learning applications, showing that efficient implementations of accelerated coordinate descent algorithms are possible for problems of this type. We also present some parallel variants and discuss their convergence properties under several models of parallel execution.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-015-0892-3