Specific transcellular staining of microglia in the adult rat after traumatic degeneration of carbocyanine-filled retinal ganglion cells

The present work was undertaken to assess the fate of ganglion cell debris in the axotomized retina of adult rats and employed a new technique to label phagocytosing microglia via the internalized material. In the main experiment, transection axotomy was performed on the intraorbital segment of the...

Full description

Saved in:
Bibliographic Details
Published inExperimental eye research Vol. 55; no. 1; pp. 101 - 117
Main Authors Thanos, Solon, Pavlidis, Christos, Mey, Jörg, Thiel, Hans-Jürgen
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 01.07.1992
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present work was undertaken to assess the fate of ganglion cell debris in the axotomized retina of adult rats and employed a new technique to label phagocytosing microglia via the internalized material. In the main experiment, transection axotomy was performed on the intraorbital segment of the optic nerve, and a fast-transported, vital fluorescent styryl dye (4Di-10ASP) was deposited at the ocular stump of the nerve in order to pre-label retrogradely the ganglion cells destined to die because of the axotomy. Optic nerve transection resulted in progressive degradation of ganglion cell axons, perikarya, and dendrites within the retina and in release of fluorescent material, which was then incorporated into cells identified as microglia. No other retinal cells stained, although astrocytes and Müller's cells also responded to neuron degeneration by accumulating glial fibrillary acidic protein. Incorporation of labelled material into microglia topo-chronologically paralleled the ganglion cell degeneration starting within the optic fibre layer (OFL) and proceeding towards the ganglion cell layer (GCL) and the inner plexiform layer (IPL) of the affected retina. Long-term labelling of microglia monitored up to 3 months after optic nerve transection indicated that labelled microglial cells persisted within the retina. Microglia displayed a strong territorial arrangement within the GCL and IPL, and staggered, bilaminated distribution in both layers. These studies directly prove that microglia in the retina can be transcellularly labelled during traumatic degeneration of ganglion cells. The findings suggest that microglial cells play an important role in axotomy-induced wound healing and removal of cell debris.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0014-4835
1096-0007
DOI:10.1016/0014-4835(92)90098-D