Cyclodextrin modified micellar electrokinetic chromatography for the chiral direct resolution of (+), (-)-trans-1,2-dihydrodiol metabolite of chrysene in vitro activated by rat liver microsome S9 fraction
A gamma-cyclodextrin (gamma-CD) modified electrokinetic micellar capillary chromatography (MEKC) method was used for the enantiomer separation of a racemic trans-1,2-dihydro-1,2-dihydroxy-chrysene (chry-trans-1,2-diOH) mixture. The chiral resolution was strongly influenced by several important param...
Saved in:
Published in | Electrophoresis Vol. 16; no. 5; p. 784 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
1995
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | A gamma-cyclodextrin (gamma-CD) modified electrokinetic micellar capillary chromatography (MEKC) method was used for the enantiomer separation of a racemic trans-1,2-dihydro-1,2-dihydroxy-chrysene (chry-trans-1,2-diOH) mixture. The chiral resolution was strongly influenced by several important parameters: surfactant concentration and addition of organic modifier to the background electrolyte (BGE). An optimized electrophoretic system was used, consisting of the following conditions: 25 mM phosphate buffer, pH 7.8, 50 mM sodium dodecyl sulfate, 20 mM gamma-CD, 7.4% v/v 2-propanol as BGE; the applied voltage, 18 kV, corresponded to 37 microA at a constant temperature of 25 degrees C. This electrophoretic method was applied for monitoring the chry-trans-1,2-diOH enantiomer formation in a real sample, obtained from in vitro metabolic activation of chrysene by phenobarbital-beta-naphthoflavone-induced rat microsomes. The (+) and (-) enantiomers were identified by the racemate and the single enantiomer standard addition method and by spectra comparison with the synthetic compound. Under the experimental conditions used for chrysene activation, the (+) optical isomer was the prevailing form. The CD-MEKC system showed high reproducibility and selectivity, allowing a fast and interference-free analysis even of the in vitro metabolic sample extract, without any pretreatment. |
---|---|
ISSN: | 0173-0835 |
DOI: | 10.1002/elps.11501601128 |