Single-Sensor Impact Source Localization Method for Anisotropic Glass Fiber Composite Wind Turbine Blades
The wind turbine blade is subject to multi-source impacts, such as bird strikes, lightning strikes, and hail, throughout its extended service. Accurate localization of those impact sources is a key technical link in structural health monitoring of the wind turbine blade. In this paper, a single-sens...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 14; p. 4466 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
17.07.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The wind turbine blade is subject to multi-source impacts, such as bird strikes, lightning strikes, and hail, throughout its extended service. Accurate localization of those impact sources is a key technical link in structural health monitoring of the wind turbine blade. In this paper, a single-sensor impact source localization method is proposed. Capitalizing on deep learning frameworks, this method innovatively transforms the impact source localization problem into a classification task, thereby eliminating the need for anisotropy compensation and correction required by conventional localization algorithms. Furthermore, it leverages the inherent coding effects of the blade’s material and geometric anisotropy on impact sources originating from different positions, enabling localization using only a single sensor. Experimental results show that the method has a high localization accuracy of 96.9% under single-sensor conditions, which significantly reduces the cost compared to the traditional multi-sensor array scheme. This study provides a cost-effective solution for real-time detection of wind turbine blade impact events. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s25144466 |