Global trends in the trophic specialisation of flower‐visitor networks are explained by current and historical climate
Trophic specialisation is known to vary across space, but the environmental factors explaining such variation remain elusive. Here we used a global dataset of flower‐visitor networks to evaluate how trophic specialisation varies between latitudinal zones (tropical and temperate) and across elevation...
Saved in:
Published in | Ecology letters Vol. 25; no. 1; pp. 113 - 124 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Trophic specialisation is known to vary across space, but the environmental factors explaining such variation remain elusive. Here we used a global dataset of flower‐visitor networks to evaluate how trophic specialisation varies between latitudinal zones (tropical and temperate) and across elevation gradients, while considering the environmental variation inherent in these spatial gradients. Specifically, we assessed the role of current (i.e., net primary productivity, temperature, and precipitation) and historical (i.e., temperature and precipitation stability) environmental factors in structuring the trophic specialisation of floral visitors. Spatial variations in trophic specialisation were not explained by latitudinal zones or elevation. Moreover, regardless of network location on the spatial gradient, there was a tendency for higher trophic specialisation in sites with high productivity and precipitation, whereas historical temperature stability was related to lower trophic specialisation. We highlight that both energetic constraints in animal foraging imposed by climate and resource availability may drive the global variation in trophic specialisation.
Regardless of network location on the spatial gradient, there was a tendency for higher trophic specialisation in sites with high productivity and precipitation, whereas historical temperature stability was related to lower trophic specialisation. These findings provide insights to further understand how the trophic specialisation of floral visitors is structured over different spatial and environmental gradients. |
---|---|
AbstractList | Trophic specialisation is known to vary across space, but the environmental factors explaining such variation remain elusive. Here we used a global dataset of flower-visitor networks to evaluate how trophic specialisation varies between latitudinal zones (tropical and temperate) and across elevation gradients, while considering the environmental variation inherent in these spatial gradients. Specifically, we assessed the role of current (i.e., net primary productivity, temperature, and precipitation) and historical (i.e., temperature and precipitation stability) environmental factors in structuring the trophic specialisation of floral visitors. Spatial variations in trophic specialisation were not explained by latitudinal zones or elevation. Moreover, regardless of network location on the spatial gradient, there was a tendency for higher trophic specialisation in sites with high productivity and precipitation, whereas historical temperature stability was related to lower trophic specialisation. We highlight that both energetic constraints in animal foraging imposed by climate and resource availability may drive the global variation in trophic specialisation.Trophic specialisation is known to vary across space, but the environmental factors explaining such variation remain elusive. Here we used a global dataset of flower-visitor networks to evaluate how trophic specialisation varies between latitudinal zones (tropical and temperate) and across elevation gradients, while considering the environmental variation inherent in these spatial gradients. Specifically, we assessed the role of current (i.e., net primary productivity, temperature, and precipitation) and historical (i.e., temperature and precipitation stability) environmental factors in structuring the trophic specialisation of floral visitors. Spatial variations in trophic specialisation were not explained by latitudinal zones or elevation. Moreover, regardless of network location on the spatial gradient, there was a tendency for higher trophic specialisation in sites with high productivity and precipitation, whereas historical temperature stability was related to lower trophic specialisation. We highlight that both energetic constraints in animal foraging imposed by climate and resource availability may drive the global variation in trophic specialisation. Trophic specialisation is known to vary across space, but the environmental factors explaining such variation remain elusive. Here we used a global dataset of flower‐visitor networks to evaluate how trophic specialisation varies between latitudinal zones (tropical and temperate) and across elevation gradients, while considering the environmental variation inherent in these spatial gradients. Specifically, we assessed the role of current (i.e., net primary productivity, temperature, and precipitation) and historical (i.e., temperature and precipitation stability) environmental factors in structuring the trophic specialisation of floral visitors. Spatial variations in trophic specialisation were not explained by latitudinal zones or elevation. Moreover, regardless of network location on the spatial gradient, there was a tendency for higher trophic specialisation in sites with high productivity and precipitation, whereas historical temperature stability was related to lower trophic specialisation. We highlight that both energetic constraints in animal foraging imposed by climate and resource availability may drive the global variation in trophic specialisation. Trophic specialisation is known to vary across space, but the environmental factors explaining such variation remain elusive. Here we used a global dataset of flower‐visitor networks to evaluate how trophic specialisation varies between latitudinal zones (tropical and temperate) and across elevation gradients, while considering the environmental variation inherent in these spatial gradients. Specifically, we assessed the role of current (i.e., net primary productivity, temperature, and precipitation) and historical (i.e., temperature and precipitation stability) environmental factors in structuring the trophic specialisation of floral visitors. Spatial variations in trophic specialisation were not explained by latitudinal zones or elevation. Moreover, regardless of network location on the spatial gradient, there was a tendency for higher trophic specialisation in sites with high productivity and precipitation, whereas historical temperature stability was related to lower trophic specialisation. We highlight that both energetic constraints in animal foraging imposed by climate and resource availability may drive the global variation in trophic specialisation. Regardless of network location on the spatial gradient, there was a tendency for higher trophic specialisation in sites with high productivity and precipitation, whereas historical temperature stability was related to lower trophic specialisation. These findings provide insights to further understand how the trophic specialisation of floral visitors is structured over different spatial and environmental gradients. |
Author | Dáttilo, Wesley Escobar, Federico Villalobos, Fabricio Poisot, Timothée Luna, Pedro Neves, Frederico S. |
Author_xml | – sequence: 1 givenname: Pedro surname: Luna fullname: Luna, Pedro organization: Instituto de Ecología A.C – sequence: 2 givenname: Fabricio surname: Villalobos fullname: Villalobos, Fabricio organization: Instituto de Ecología A.C – sequence: 3 givenname: Federico surname: Escobar fullname: Escobar, Federico organization: Instituto de Ecología A.C – sequence: 4 givenname: Frederico S. surname: Neves fullname: Neves, Frederico S. organization: Universidade Federal de Minas Gerais – sequence: 5 givenname: Wesley orcidid: 0000-0002-4758-4379 surname: Dáttilo fullname: Dáttilo, Wesley email: wdattilo@hotmail.com organization: Instituto de Ecología A.C – sequence: 6 givenname: Timothée surname: Poisot fullname: Poisot, Timothée |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34761496$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c1u1DAQB3ALFdEPOPACyBIXetjWH4njHFG1FKSVuIDELZo4E62L1w62w3ZvfYQ-I09S0y09VAJ8sS395m-N55gc-OCRkNecnfGyztHhGZctZ8_IEa8UXzBR6YPHs_x2SI5TumKMi7bhL8ihrBrFq1YdketLF3pwNEf0Q6LW07zGcgvT2hqaJjQWnE2QbfA0jHR0YYvx183tT5tsDpF6zNsQvycKESleTw6sx4H2O2rmWEIzBT_QtU0FW1NeMs5uIONL8nwEl_DVw35Cvn5Yfrn4uFh9vvx08X61MFIrtpA4YK8MR42CA-imabgWANU4wgBDr7XGpu8rqAWaFnpVo6hRG6H6Go1o5Ql5t8-dYvgxY8rdxiaDzoHHMKdOKKkqVreS_5_WrarqmitV6Nsn9CrM0ZdGSiDTQgguZVFvHtTcb3Doplhaj7vuz_cXcLoHJoaUIo6PhLPu92i7MtrufrTFnj-xxub7ueQI1v2rYmsd7v4e3S1Xy33FHTo7t1U |
CitedBy_id | crossref_primary_10_1111_ele_14029 crossref_primary_10_1111_ele_14105 crossref_primary_10_1007_s10584_022_03447_3 crossref_primary_10_1111_oik_10301 crossref_primary_10_1016_j_foreco_2023_120819 crossref_primary_10_1111_nph_20229 crossref_primary_10_1111_btp_70027 crossref_primary_10_1007_s40823_023_00090_1 crossref_primary_10_1111_ecog_06763 crossref_primary_10_1111_jbi_14684 crossref_primary_10_1007_s10531_024_02974_y crossref_primary_10_1111_jbi_15012 crossref_primary_10_1007_s11829_024_10056_7 |
Cites_doi | 10.1086/286187 10.1016/j.ecocom.2009.03.008 10.1111/j.1461-0248.2011.01649.x 10.1111/j.1466-8238.2012.00777.x 10.1098/rspb.2007.1106 10.1111/plb.12593 10.1111/ele.12204 10.1093/aob/mcp057 10.1038/s41467-018-05610-w 10.1111/jbi.12453 10.1890/ES13-00222.1 10.1111/j.1365-2664.2009.01744.x 10.1016/j.ecocom.2018.12.006 10.1111/jbi.13045 10.1890/0012-9658(2002)083[2394:QDOFWM]2.0.CO;2 10.1086/282454 10.1111/j.2041-210x.2012.00261.x 10.1126/science.1204498 10.17161/bi.v14i0.9786 10.1038/ncomms13736 10.1086/282436 10.1046/j.1466-822x.2001.00229.x 10.1111/geb.12932 10.1073/pnas.1633576100 10.1111/ecog.01538 10.1086/286113 10.1086/421445 10.1146/annurev.es.19.110188.001231 10.1002/joc.1276 10.1111/j.1095-8339.2009.00995.x 10.1034/j.1600-0706.2002.980215.x 10.1002/ece3.6056 10.1007/978-3-030-66877-8_10 10.1146/annurev.ecolsys.33.010802.150520 10.1146/annurev-ecolsys-110316-023003 10.1146/annurev-ecolsys-110316-022821 10.1111/ddi.13138 10.1111/geb.12602 10.1007/978-1-4614-7618-4 10.1371/journal.pone.0025891 10.1146/annurev.ecolsys.38.091206.095818 10.1111/oik.03006 10.1126/science.aax0149 10.1038/nature24273 10.1016/j.ecocom.2009.06.001 10.1111/j.1600-0706.2010.18376.x 10.1890/0012-9658(2002)083[2416:GPIPPM]2.0.CO;2 10.1111/oik.01719 10.1111/geb.13310 10.1111/ecog.01764 10.1016/j.baae.2010.11.001 10.1016/j.cub.2012.08.015 10.1111/1365-2745.12978 10.1890/11-0650.1 10.1038/srep03007 10.1038/s41561-018-0236-z 10.1007/978-3-319-68228-0_1 10.1111/geb.12362 10.1111/jbi.13615 10.7208/chicago/9780226118697.001.0001 10.1111/1365-2656.12158 10.1111/jbi.12228 10.1371/journal.pbio.0040001 10.1086/282487 10.1126/science.abf0556 10.1890/07-0451.1 10.1111/geb.12355 10.1111/j.1600-0587.2013.00201.x |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons Ltd. Copyright © 2022 John Wiley & Sons Ltd/CNRS |
Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: Copyright © 2022 John Wiley & Sons Ltd/CNRS |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7X8 7S9 L.6 |
DOI | 10.1111/ele.13910 |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Entomology Abstracts AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1461-0248 |
EndPage | 124 |
ExternalDocumentID | 34761496 10_1111_ele_13910 ELE13910 |
Genre | letter Letter Correspondence |
GrantInformation_xml | – fundername: Consejo Nacional de Ciencia y Tecnología funderid: Ciencia Básica project A1‐S‐34563. – fundername: Consejo Nacional de Ciencia y Tecnología grantid: Ciencia Básica project A1-S-34563. |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ N~3 O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 AAMMB AEFGJ AGXDD AIDQK AIDYY C1K H94 M7N 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3860-3edeb6c1e8e21aa8777182aa4ffadadb888e7bb4a52ec9ab65e25e8c26b5ec293 |
IEDL.DBID | DR2 |
ISSN | 1461-023X 1461-0248 |
IngestDate | Fri Jul 11 18:35:11 EDT 2025 Fri Jul 11 07:52:10 EDT 2025 Fri Jul 25 19:43:04 EDT 2025 Thu Apr 03 07:03:14 EDT 2025 Tue Jul 01 02:29:52 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 Wed Jan 22 16:28:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | mountains ecological networks macroecology trophic specialisation elevation gradients niche breadth |
Language | English |
License | 2021 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3860-3edeb6c1e8e21aa8777182aa4ffadadb888e7bb4a52ec9ab65e25e8c26b5ec293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Correspondence-1 |
ORCID | 0000-0002-4758-4379 |
PMID | 34761496 |
PQID | 2608222133 |
PQPubID | 32390 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2636405931 proquest_miscellaneous_2596455166 proquest_journals_2608222133 pubmed_primary_34761496 crossref_primary_10_1111_ele_13910 crossref_citationtrail_10_1111_ele_13910 wiley_primary_10_1111_ele_13910_ELE13910 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 2022-Jan 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Paris |
PublicationTitle | Ecology letters |
PublicationTitleAlternate | Ecol Lett |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2017; 40 2004; 164 2013; 3 2015; 38 2013; 4 2013; 22 2017; 48 2019; 13 2017; 44 2002; 98 2019; 14 2011; 12 2020; 10 2011; 14 2017; 550 2021; 30 1998; 151 2019; 365 2007; 38 2005; 25 1998; 152 2018; 9 2010; 119 2002; 83 2015; 42 2019; 28 1967; 101 1862 2009; 161 2014; 17 2012; 22 2010; 7 2001; 10 2011; 333 2017; 26 2018; 106 1988; 19 2015; 124 2002; 33 2019; 38 2006; 6 2005 2006; 4 2016; 125 2002 2014; 41 2014; 83 2011; 6 2018; 20 2015; 24 2012; 93 2016; 7 2013; 36 1966; 100 2010; 47 2021 2020 2017; 13 2007; 274 2019; 47 2018 2020; 26 2008; 89 2021; 372 2013 2018; 11 2003; 100 2016; 25 2009; 103 e_1_2_8_28_1 Lawson D.A. (e_1_2_8_36_1) 2019; 13 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Poisot T. (e_1_2_8_56_1) 2020 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 Blüthgen N. (e_1_2_8_13_1) 2006; 6 e_1_2_8_17_1 e_1_2_8_15_1 Lara‐Romero C. (e_1_2_8_35_1) 2019; 47 e_1_2_8_38_1 e_1_2_8_57_1 Quitián M. (e_1_2_8_59_1) 2017; 40 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 Schemske D.W. (e_1_2_8_63_1) 2002 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 Darwin C. (e_1_2_8_19_1) 1862 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 6 start-page: 1 issue: 9 year: 2006 end-page: 12 article-title: Measuring specialization in species interaction networks publication-title: BMC Ecology – start-page: 439 year: 1862 end-page: 457 – volume: 4 start-page: 133 year: 2013 end-page: 142 article-title: A general and simple method for obtaining from generalized linear mixed‐effects models publication-title: Methods in Ecology and Evolution – volume: 28 start-page: 1 issue: 9 year: 2019 end-page: 12 article-title: Macroecological patterns and correlates of ant—tree interaction networks in Neotropical savannas publication-title: Global Ecology and Biogeography – volume: 151 start-page: 223 year: 1998 end-page: 235 article-title: Optimal foraging, specialization, and a solution to Liem’s paradox publication-title: American Naturalist – volume: 100 start-page: 603 year: 1966 end-page: 609 article-title: On optimal use of a patchy environment publication-title: American Naturalist – volume: 30 start-page: 1447 year: 2021 end-page: 1460 article-title: Geographic variation in the robustness of pollination networks is mediated by modularity publication-title: Global Ecology and Biogeography – year: 2005 – volume: 12 start-page: 282 year: 2011 end-page: 291 article-title: Functional complementarity and specialisation: the role of biodiversity in plant‐pollinator interactions publication-title: Basic and Applied Ecology – volume: 10 start-page: 1 issue: 4 year: 2020 end-page: 14 article-title: Specialization of plant–pollinator interactions increases with temperature at Mt. Kilimanjaro publication-title: Ecology and Evolution – volume: 47 start-page: 15 year: 2010 end-page: 25 article-title: Defining and measuring ecological specialization publication-title: Journal of Applied Ecology – volume: 19 start-page: 207 year: 1988 end-page: 233 article-title: The evolution of ecological specialization publication-title: Annual Review of Ecology and Systematics – volume: 125 start-page: 492 year: 2016 end-page: 501 article-title: Network analyses support the role of prey preferences in shaping resource use patterns within five animal populations publication-title: Oikos – start-page: 1 year: 2018 end-page: 201 – volume: 41 start-page: 8 year: 2014 end-page: 22 article-title: Why are there so many species in the tropics? publication-title: Journal of Biogeography – volume: 13 start-page: 183 issue: 39 year: 2017 end-page: 206 article-title: Evolution of ecological niche breadth publication-title: Annual Review of Ecology Evolution and Systematics – volume: 550 start-page: 511 year: 2017 end-page: 514 article-title: Indirect effects drive coevolution in mutualistic networks publication-title: Nature – volume: 101 start-page: 233 year: 1967 end-page: 249 article-title: Why mountain passes are higher in the tropics publication-title: American Naturalist – volume: 372 start-page: 733 year: 2021 end-page: 737 article-title: Macroevolutionary stability predicts interaction patterns of species in seed dispersal networks publication-title: Science (80‐) – volume: 24 start-page: 1212 year: 2015 end-page: 1224 article-title: The macroecology of phylogenetically structured hummingbird‐plant networks publication-title: Global Ecology and Biogeography – volume: 33 start-page: 741 year: 2002 end-page: 777 article-title: The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution publication-title: Annual Review of Ecology and Systematics – start-page: 163 year: 2002 end-page: 173 – volume: 365 start-page: 1108 year: 2019 end-page: 1113 article-title: Humboldt’s enigma: what causes global patterns of mountain biodiversity? publication-title: Science (80‐) – volume: 9 start-page: 1 year: 2018 end-page: 10 article-title: Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient publication-title: Nature Communications – volume: 22 start-page: 1925 year: 2012 end-page: 1931 article-title: Specialization of mutualistic interaction networks decreases toward tropical latitudes publication-title: Current Biology – volume: 3 start-page: 1 year: 2013 end-page: 7 article-title: Global variation in elevational diversity patterns publication-title: Scientific Reports – volume: 106 start-page: 2409 year: 2018 end-page: 2420 article-title: Temporal variation in plant–pollinator networks from seasonal tropical environments: higher specialization when resources are scarce publication-title: Journal of Ecology – volume: 7 start-page: 36 year: 2010 end-page: 43 article-title: Centrality measures and the importance of generalist species in pollination networks publication-title: Ecological Complexity – volume: 119 start-page: 1610 year: 2010 end-page: 1624 article-title: Plant‐pollinator network assembly along the chronosequence of a glacier foreland publication-title: Oikos – volume: 36 start-page: 1331 issue: 12 year: 2013 end-page: 1340 article-title: Historical climate‐change influences modularity and nestedness of pollination networks publication-title: Ecography – volume: 20 start-page: 176 year: 2018 end-page: 183 article-title: Climate drives plant–pollinator interactions even along small‐scale climate gradients: the case of the Aegean publication-title: Plant Biology – volume: 7 start-page: 86 year: 2010 end-page: 90 article-title: Topological change of Andean plant‐pollinator networks along an altitudinal gradient publication-title: Ecological Complexity – volume: 38 start-page: 1 year: 2019 end-page: 10 article-title: The dilemma of binary or weighted data in interaction networks publication-title: Ecological Complexity – volume: 7 start-page: 1 issue: 1 year: 2016 end-page: 11 article-title: Predictors of elevational biodiversity gradients change from single taxa to the multi‐taxa community level publication-title: Nature Communications – volume: 103 start-page: 1445 year: 2009 end-page: 1457 article-title: Uniting pattern and process in plant‐animal mutualistic networks: a review publication-title: Annals of Botany – volume: 164 start-page: E1 year: 2004 end-page: E19 article-title: The latitudinal gradient in niche breadth: concepts and evidence publication-title: American Naturalist – volume: 98 start-page: 340 year: 2002 end-page: 350 article-title: Latitudinal trends in plant‐pollinator interactions: are tropical plants more specialised? publication-title: Oikos – start-page: 261 year: 2021 end-page: 281 – volume: 42 start-page: 652 year: 2015 end-page: 661 article-title: Unrivalled specialization in a pollination network from South Africa reveals that specialization increases with latitude only in the Southern Hemisphere publication-title: Journal of Biogeography – volume: 10 start-page: 3 year: 2001 end-page: 13 article-title: Elevation gradients of species‐density: historical and prospective views publication-title: Global Ecology and Biogeography – volume: 6 year: 2011 article-title: Specialization in plant‐hummingbird networks is associated with species richness, contemporary precipitation and quaternary climate‐change velocity publication-title: PLoS One – volume: 44 start-page: 1891 year: 2017 end-page: 1910 article-title: Global patterns of interaction specialization in bird–flower networks publication-title: Journal of Biogeography – volume: 38 start-page: 1119 year: 2015 end-page: 1128 article-title: Functional structure and specialization in three tropical plant‐hummingbird interaction networks across an elevational gradient in Costa Rica publication-title: Ecography (Cop.) – volume: 100 start-page: 419 year: 1966 end-page: 424 article-title: Measurement of “Overlap” in comparative ecological studies publication-title: American Naturalist – volume: 83 start-page: 2394 issue: 9 year: 2002 end-page: 2407 article-title: Quantitative descriptors of food‐web matrices publication-title: Ecology – volume: 13 start-page: 561 year: 2019 end-page: 569 article-title: The effects of rainfall on plant–pollinator interactions publication-title: Bioevaluation of Subabul(Leucaena leucocephala) Proteinase Inhibitors on Helicoverpa Armigera – volume: 274 start-page: 2995 year: 2007 end-page: 3003 article-title: Climatic zonation drives latitudinal variation in speciation mechanisms publication-title: Proceedings of the Royal Society B‐Biological Sciences – volume: 4 start-page: art147 year: 2013 article-title: Transience and constancy of interactions in a plant‐frugivore network publication-title: Ecosphere – volume: 11 start-page: 718 year: 2018 end-page: 725 article-title: Geological and climatic influences on mountain biodiversity publication-title: Nature Geoscience – volume: 14 start-page: 877 year: 2011 end-page: 885 article-title: Evolution and coevolution in mutualistic networks publication-title: Ecology Letters – volume: 100 start-page: 9383 year: 2003 end-page: 9387 article-title: The nested assembly of plant‐animal mutualistic networks publication-title: Proceedings of the National Academy of Sciences – start-page: 232 year: 2020 – volume: 152 start-page: 510 year: 1998 end-page: 529 article-title: Why more productive sites have more species: an experimental test of theory using tree‐hole communities publication-title: American Naturalist – volume: 93 start-page: 981 issue: 5 year: 2012 end-page: 991 article-title: Revisiting the evolution of ecological specialization, with emphasis on insect–plant interactions publication-title: Ecology – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 89 start-page: 1573 year: 2008 end-page: 1582 article-title: Temporal dynamics in a pollination network publication-title: Ecology – volume: 83 start-page: 639 year: 2014 end-page: 650 article-title: Specialization and phenological synchrony of plant‐pollinator interactions along an altitudinal gradient publication-title: Journal of Animal Ecology – volume: 83 start-page: 2416 year: 2002 article-title: Geographic patterns in plant‐pollinator mutualistic networks publication-title: Ecology – volume: 22 start-page: 149 year: 2013 end-page: 162 article-title: Macroecology of pollination networks publication-title: Global Ecology and Biogeography – volume: 47 start-page: 1598 issue: 7 year: 2019 end-page: 1610 article-title: Beta diversity and specialization in plant–pollinator networks along an elevational gradient publication-title: Journal of Biogeography – volume: 40 start-page: 478 year: 2017 end-page: 486 article-title: Over the top: do thermal barriers along elevation gradients limit biotic similarity? publication-title: Ecography (Cop.) – volume: 161 start-page: 1 year: 2009 end-page: 19 article-title: Orchid pollination: from Darwin to the present day publication-title: Botanical Journal of the Linnean Society – volume: 40 start-page: 1 year: 2017 end-page: 10 article-title: Elevation‐dependent effects of forest fragmentation on plant‐bird interaction networks in the tropical Andes publication-title: Ecography (Cop.) – volume: 4 start-page: 0129 year: 2006 end-page: 0135 article-title: Functional diversity of plant‐pollinator interaction webs enhances the persistence of plant communities publication-title: PLoS Biology – volume: 124 start-page: 243 year: 2015 end-page: 251 article-title: Beyond species: why ecological interaction networks vary through space and time publication-title: Oikos – year: 2020 – volume: 333 start-page: 1750 year: 2011 end-page: 1754 article-title: Productivity is a poor predictor of plant species richness publication-title: Science – volume: 38 start-page: 567 year: 2007 end-page: 593 article-title: Plant‐Animal mutualistic networks: the architecture of biodiversity publication-title: Annual Review of Ecology Evolution and Systematics – volume: 25 start-page: 880 year: 2016 end-page: 890 article-title: Global patterns of mainland and insular pollination networks publication-title: Global Ecology and Biogeography – volume: 26 start-page: 942 year: 2017 end-page: 951 article-title: Hosts, parasites and their interactions respond to different climatic variables publication-title: Global Ecology and Biogeography – volume: 48 start-page: 25 issue: 1 year: 2017 end-page: 48 article-title: Ecological networks across environmental gradients publication-title: Annual Review of Ecology Evolution and Systematics – volume: 17 start-page: 115 year: 2014 end-page: 124 article-title: Historical contingency in species interactions: towards niche‐based predictions publication-title: Ecology Letters – volume: 14 start-page: 8 year: 2019 end-page: 13 article-title: climateStability: an R package to estimate climate stability from time‐slice climatologies publication-title: Biodiversity Informatics – volume: 26 start-page: 1566 year: 2020 end-page: 1581 article-title: Bumblebee diversity and pollination networks along the elevation gradient of Mount Olympus, Greece publication-title: Diversity and Distributions – year: 2013 – ident: e_1_2_8_67_1 doi: 10.1086/286187 – ident: e_1_2_8_44_1 doi: 10.1016/j.ecocom.2009.03.008 – ident: e_1_2_8_26_1 doi: 10.1111/j.1461-0248.2011.01649.x – volume: 40 start-page: 1 year: 2017 ident: e_1_2_8_59_1 article-title: Elevation‐dependent effects of forest fragmentation on plant‐bird interaction networks in the tropical Andes publication-title: Ecography (Cop.) – ident: e_1_2_8_70_1 doi: 10.1111/j.1466-8238.2012.00777.x – ident: e_1_2_8_34_1 doi: 10.1098/rspb.2007.1106 – ident: e_1_2_8_54_1 doi: 10.1111/plb.12593 – start-page: 232 volume-title: Theory of evolution: principles, concepts, and assumptions year: 2020 ident: e_1_2_8_56_1 – ident: e_1_2_8_72_1 doi: 10.1111/ele.12204 – ident: e_1_2_8_73_1 doi: 10.1093/aob/mcp057 – ident: e_1_2_8_3_1 doi: 10.1038/s41467-018-05610-w – start-page: 163 volume-title: Foundations of tropical forest biology year: 2002 ident: e_1_2_8_63_1 – ident: e_1_2_8_53_1 doi: 10.1111/jbi.12453 – ident: e_1_2_8_75_1 doi: 10.1890/ES13-00222.1 – ident: e_1_2_8_22_1 doi: 10.1111/j.1365-2664.2009.01744.x – ident: e_1_2_8_47_1 doi: 10.1016/j.ecocom.2018.12.006 – ident: e_1_2_8_76_1 doi: 10.1111/jbi.13045 – ident: e_1_2_8_9_1 doi: 10.1890/0012-9658(2002)083[2394:QDOFWM]2.0.CO;2 – ident: e_1_2_8_10_1 – ident: e_1_2_8_41_1 doi: 10.1086/282454 – ident: e_1_2_8_48_1 doi: 10.1111/j.2041-210x.2012.00261.x – ident: e_1_2_8_2_1 doi: 10.1126/science.1204498 – ident: e_1_2_8_52_1 doi: 10.17161/bi.v14i0.9786 – ident: e_1_2_8_55_1 doi: 10.1038/ncomms13736 – ident: e_1_2_8_31_1 doi: 10.1086/282436 – ident: e_1_2_8_39_1 doi: 10.1046/j.1466-822x.2001.00229.x – ident: e_1_2_8_21_1 doi: 10.1111/geb.12932 – ident: e_1_2_8_7_1 doi: 10.1073/pnas.1633576100 – ident: e_1_2_8_42_1 doi: 10.1111/ecog.01538 – ident: e_1_2_8_62_1 doi: 10.1086/286113 – ident: e_1_2_8_74_1 doi: 10.1086/421445 – ident: e_1_2_8_25_1 doi: 10.1146/annurev.es.19.110188.001231 – ident: e_1_2_8_30_1 doi: 10.1002/joc.1276 – ident: e_1_2_8_45_1 doi: 10.1111/j.1095-8339.2009.00995.x – ident: e_1_2_8_51_1 doi: 10.1034/j.1600-0706.2002.980215.x – ident: e_1_2_8_16_1 doi: 10.1002/ece3.6056 – ident: e_1_2_8_29_1 – ident: e_1_2_8_40_1 doi: 10.1007/978-3-030-66877-8_10 – ident: e_1_2_8_32_1 doi: 10.1146/annurev.ecolsys.33.010802.150520 – ident: e_1_2_8_65_1 doi: 10.1146/annurev-ecolsys-110316-023003 – ident: e_1_2_8_71_1 doi: 10.1146/annurev-ecolsys-110316-022821 – ident: e_1_2_8_46_1 doi: 10.1111/ddi.13138 – ident: e_1_2_8_57_1 doi: 10.1111/geb.12602 – ident: e_1_2_8_11_1 doi: 10.1007/978-1-4614-7618-4 – ident: e_1_2_8_17_1 doi: 10.1371/journal.pone.0025891 – ident: e_1_2_8_6_1 doi: 10.1146/annurev.ecolsys.38.091206.095818 – ident: e_1_2_8_37_1 doi: 10.1111/oik.03006 – start-page: 439 volume-title: The essential naturalist year: 1862 ident: e_1_2_8_19_1 – ident: e_1_2_8_60_1 doi: 10.1126/science.aax0149 – ident: e_1_2_8_27_1 doi: 10.1038/nature24273 – ident: e_1_2_8_61_1 doi: 10.1016/j.ecocom.2009.06.001 – ident: e_1_2_8_4_1 doi: 10.1111/j.1600-0706.2010.18376.x – ident: e_1_2_8_50_1 doi: 10.1890/0012-9658(2002)083[2416:GPIPPM]2.0.CO;2 – ident: e_1_2_8_58_1 doi: 10.1111/oik.01719 – ident: e_1_2_8_38_1 doi: 10.1111/geb.13310 – ident: e_1_2_8_77_1 doi: 10.1111/ecog.01764 – ident: e_1_2_8_12_1 doi: 10.1016/j.baae.2010.11.001 – ident: e_1_2_8_64_1 doi: 10.1016/j.cub.2012.08.015 – volume: 13 start-page: 561 year: 2019 ident: e_1_2_8_36_1 article-title: The effects of rainfall on plant–pollinator interactions publication-title: Bioevaluation of Subabul(Leucaena leucocephala) Proteinase Inhibitors on Helicoverpa Armigera – volume: 6 start-page: 1 issue: 9 year: 2006 ident: e_1_2_8_13_1 article-title: Measuring specialization in species interaction networks publication-title: BMC Ecology – ident: e_1_2_8_66_1 doi: 10.1111/1365-2745.12978 – ident: e_1_2_8_24_1 doi: 10.1890/11-0650.1 – ident: e_1_2_8_28_1 doi: 10.1038/srep03007 – ident: e_1_2_8_5_1 doi: 10.1038/s41561-018-0236-z – ident: e_1_2_8_20_1 doi: 10.1007/978-3-319-68228-0_1 – ident: e_1_2_8_69_1 doi: 10.1111/geb.12362 – volume: 47 start-page: 1598 issue: 7 year: 2019 ident: e_1_2_8_35_1 article-title: Beta diversity and specialization in plant–pollinator networks along an elevational gradient publication-title: Journal of Biogeography doi: 10.1111/jbi.13615 – ident: e_1_2_8_68_1 doi: 10.7208/chicago/9780226118697.001.0001 – ident: e_1_2_8_8_1 doi: 10.1111/1365-2656.12158 – ident: e_1_2_8_14_1 doi: 10.1111/jbi.12228 – ident: e_1_2_8_23_1 doi: 10.1371/journal.pbio.0040001 – ident: e_1_2_8_33_1 doi: 10.1086/282487 – ident: e_1_2_8_15_1 doi: 10.1126/science.abf0556 – ident: e_1_2_8_49_1 doi: 10.1890/07-0451.1 – ident: e_1_2_8_43_1 doi: 10.1111/geb.12355 – ident: e_1_2_8_18_1 doi: 10.1111/j.1600-0587.2013.00201.x |
SSID | ssj0012971 |
Score | 2.4536376 |
Snippet | Trophic specialisation is known to vary across space, but the environmental factors explaining such variation remain elusive. Here we used a global dataset of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113 |
SubjectTerms | Animals Climate data collection ecological networks elevation gradients Environmental factors Flowers macroecology mountains Net Primary Productivity niche breadth Nutritional Status Precipitation Resource availability Spatial variations Specialization temperature trophic specialisation |
Title | Global trends in the trophic specialisation of flower‐visitor networks are explained by current and historical climate |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.13910 https://www.ncbi.nlm.nih.gov/pubmed/34761496 https://www.proquest.com/docview/2608222133 https://www.proquest.com/docview/2596455166 https://www.proquest.com/docview/2636405931 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEB1CoNBL2zT9cJqGTekhFxksr1YSOYXiEEqSQ2nAh4KYXY2IqZFNbEPcU35CfmN_SWZ2JdGkbSi9SXgEa-3OznurmTcAHwmZ65DRkeXYzARFlxFmpYlSW2XGuAGhP8w5OzcnF_rzOBlvwGFbCxP0IboDN_EMv1-Lg6Nd_OLkvCv3Gb748irJ1RJA9KWTjuIwFsiWNkyX4-G4URWSLJ7uyfux6DeAeR-v-oBz_By-tUMNeSbf-6ul7bsfD1Qc__O_vIBnDRBVR2HlbMEG1S_hSWhNuearkZezXm_DdWgLoJY-e1ZNasWYke9m88uJU4vQv75JClKzSlVTabz28-ZWytaZ0as6ZJovFF6Rouv5FHm8pbJr5YI4lMK6VJedXoly0wnjaHoFF8ejr59OoqZfQ-SGmeHtnEqyMr8ZxQNEURpk9oKoqwpLLC2TbUqt1ZjE5HK0JqE4oczFxibkGHe8hs16VtNbUFjGuSyuQSXhM80zkpJ93pzzFNGi68FBO3OFa8TMpafGtGhJDb_Swr_SHnzoTOdBweNPRrvt9BeNEy8KpnoCn5jF92C_-5ndT76pYE2zFdskudHysdE8YmOGRkvrxEEP3oSl1Y1kqFMGSDk_feAXyN-HWIxOR_5i599N38HTWMo1_JHRLmwur1b0nkHU0u55b7kDk90avg |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VRQguvB-BAgvi0IsjxVmvbYkLQqkCpD2gVsoFWbPrsRoROVGTSE1P_Qn8Rn4JM7u2RXkJcbOVsbTx7ux833rmG4DXhMx1yOjIcmxmgqLLCLPSRKmtMmPcgNAf5hwemfGJ_jBNpjvwpq2FCfoQ3YGbeIbfr8XB5UD6By_nbbnP-EXqq65JR29PqD514lEcyALd0oYJczycNrpCksfTPXo1Gv0CMa8iVh9yDm7D53awIdPkS3-ztn138ZOO4__-mztwq8Gi6m1YPHdhh-p7cD10p9zy1cgrWm_vw3noDKDWPoFWzWrFsJHvFsvTmVOr0MK-yQtSi0pVc-m99u3yq1SuM6lXdUg2Xyk8I0XnyznygEtlt8oFfSiFdalOO8kS5eYzhtL0AE4ORsfvxlHTsiFyw8zwjk4lWZnijOIBoogNMoFB1FWFJZaW-Tal1mpMYnI5WpNQnFDmYmMTcgw9HsJuvajpMSgs41zW16CSCJrmGUnVPu_PeYpo0fVgv526wjV65tJWY160vIZfaeFfaQ9edabLIOLxO6O9dv6Lxo9XBbM9QVBM5HvwsvuZPVA-q2BNiw3bJLnR8r3R_MXGDI2W7omDHjwKa6sbyVCnjJFyfnrfr5A_D7EYTUb-4sm_m76AG-Pjw0kxeX_08SncjKV6w58g7cHu-mxDzxhTre1z7zrfAR71Htk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB1VRSAu5RtSCiyIQy-OiLNe2-KEaKICpUKISjkgWbPrsRoROVGTSA0nfgK_kV_CzK5tUb6EuNnKWNp4Z3beW--8AXhKyFyHjI4s52YmKLqMMCtNlNoqM8YNCP1mzttjc3iiX0-SyRY8b2thgj5Et-EmkeHXawnwRVn9EOS8KvcZvkh51SVtnmXi0gfvO-0ozmOBbWnDfDkeThpZITnG0z16MRn9gjAvAlafccbX4GM71nDQ5FN_vbJ99_knGcf__DPXYadBoupFcJ0bsEX1TbgcelNu-Grk9aw3t-A89AVQK398Vk1rxaCR7-aL06lTy9DAvjkVpOaVqmbSee3bl69St86UXtXhqPlS4RkpOl_MkMdbKrtRLqhDKaxLddoJlig3mzKQpttwMh59eHkYNQ0bIjfMDK_nVJKVCc4oHiCK1CDTF0RdVVhiaZltU2qtxiQml6M1CcUJZS42NiHHwOMObNfzmu6BwjLOxbsGleTPNM9IavZ5dc5TRIuuB_vtzBWuUTOXphqzomU1_EoL_0p78KQzXQQJj98Z7bXTXzRRvCyY6wl-Yhrfg8fdzxx_8lEFa5qv2SbJjZavjeYvNmZotPROHPTgbnCtbiRDnTJCyvnpfe8gfx5iMToa-Yvdfzd9BFfeHYyLo1fHb-7D1VhKN_z20R5sr87W9IAB1co-9IHzHdLlHZE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+trends+in+the+trophic+specialisation+of+flower%E2%80%90visitor+networks+are+explained+by+current+and+historical+climate&rft.jtitle=Ecology+letters&rft.au=Luna%2C+Pedro&rft.au=Villalobos%2C+Fabricio&rft.au=Escobar%2C+Federico&rft.au=Neves%2C+Frederico+S.&rft.date=2022-01-01&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=25&rft.issue=1&rft.spage=113&rft.epage=124&rft_id=info:doi/10.1111%2Fele.13910&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_ele_13910 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon |