Optimization problems in correlated networks
Background Solving the shortest path and min-cut problems are key in achieving high-performance and robust communication networks. Those problems have often been studied in deterministic and uncorrelated networks both in their original formulations as well as in several constrained variants. However...
Saved in:
Published in | Computational social networks Vol. 3; no. 1; pp. 1 - 20 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.01.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Background
Solving the shortest path and min-cut problems are key in achieving high-performance and robust communication networks. Those problems have often been studied in deterministic and uncorrelated networks both in their original formulations as well as in several constrained variants. However, in real-world networks, link weights (e.g., delay, bandwidth, failure probability) are often correlated due to spatial or temporal reasons, and these correlated link weights together behave in a different manner and are not always additive, as commonly assumed.
Methods
In this paper, we first propose two correlated link weight models, namely (1) the deterministic correlated model and (2) the (log-concave) stochastic correlated model. Subsequently, we study the shortest path problem and the min-cut problem under these two correlated models.
Results and Conclusions
We prove that these two problems are NP-hard under the deterministic correlated model, and even cannot be approximated to arbitrary degree in polynomial time. However, these two problems are solvable in polynomial time under the (constrained) nodal deterministic correlated model, and can be solved by convex optimization under the (log-concave) stochastic correlated model. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2197-4314 2197-4314 |
DOI: | 10.1186/s40649-016-0026-y |