Structure and functions of profilins
Profilins are small actin-binding proteins found in eukaryotes and certain viruses that are involved in cell development, cytokinesis, membrane trafficking, and cell motility. Originally identified as an actin sequestering/binding protein, profilin has been involved in actin polymerization dynamics....
Saved in:
Published in | Biophysical reviews Vol. 1; no. 2; pp. 71 - 81 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.07.2009
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Profilins are small actin-binding proteins found in eukaryotes and certain viruses that are involved in cell development, cytokinesis, membrane trafficking, and cell motility. Originally identified as an actin sequestering/binding protein, profilin has been involved in actin polymerization dynamics. It catalyzes the exchange of ADP/ATP in actin and increases the rate of polymerization. Profilins also interact with polyphosphoinositides (PPI) and proline-rich domains containing proteins. Through its interaction with PPIs, profilin has been linked to signaling pathways between the cell membrane and the cytoskeleton, while its role in membrane trafficking has been associated with its interaction with proline-rich domain-containing proteins. Depending on the organism, profilin is present in a various number of isoforms. Four isoforms of profilin have been reported in higher organisms, while only one or two isoforms are expressed in single-cell organisms. The affinity of these isoforms for their ligands varies between isoforms and should therefore modulate their functions. However, the significance and the functions of the different isoforms are not yet fully understood. The structures of many profilin isoforms have been solved both in the presence and the absence of actin and poly-
L
-proline. These structural studies will greatly improve our understanding of the differences and similarities between the different profilins. Structural stability studies of different profilins are also shedding some light on our understanding of the profilin/ligand interactions. Profilin is a multifaceted protein for which a dramatic increase in potential functions has been found in recent years; as such, it has been implicated in a variety of physiological and pathological processes. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 1867-2450 1867-2469 |
DOI: | 10.1007/s12551-009-0010-y |