Reductive and adsorptive elimination of U(VI) ions in aqueous solution by SFeS@Biochar composites

The novel biochar supported by starch and nanoscale iron sulfide (SFeS@Biochar) composites were successfully prepared through coupling of biochar derived from peanut shell with nanoscale ferrous sulfide and starch under nitrogen atmosphere. It had the advantages of biochar, starch, and nanoscale fer...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 28; no. 39; pp. 55176 - 55185
Main Authors Liu, Renrong, Wang, Hai, Han, Li, Hu, Baowei, Qiu, Muqing
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The novel biochar supported by starch and nanoscale iron sulfide (SFeS@Biochar) composites were successfully prepared through coupling of biochar derived from peanut shell with nanoscale ferrous sulfide and starch under nitrogen atmosphere. It had the advantages of biochar, starch, and nanoscale ferrous sulfide. Therefore, it could overcome some shortcomings. The nanoscale ferrous sulfide particles and starch were thought to be loaded successfully on the surface of the biochar by SEM, EDS, BET, XRD, FT-IR, and XPS techniques. High uptake capacity of U(VI) by SFeS@Biochar could be attributed to reactive reaction of FeS nanoparticles and adsorptive of a lot of functional groups. The proposed reaction mechanisms of the U(VI) uptake by SFeS@Biochar were electrostatic attraction, surface complexation, precipitation, and reductive reaction. It also might be an improved environmentally friendly material for U(VI) removal.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0944-1344
1614-7499
1614-7499
DOI:10.1007/s11356-021-14835-0