Superballistic flow of viscous electron fluid through graphene constrictions

Electron-electron (e-e) collisions can impact transport in a variety of surprising and sometimes counterintuitive ways. Despite strong interest, experiments on the subject proved challenging because of the simultaneous presence of different scattering mechanisms that suppress or obscure consequences...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 13; no. 12; pp. 1182 - 1185
Main Authors Krishna Kumar, R., Bandurin, D. A., Pellegrino, F. M. D., Cao, Y., Principi, A., Guo, H., Auton, G. H., Ben Shalom, M., Ponomarenko, L. A., Falkovich, G., Watanabe, K., Taniguchi, T., Grigorieva, I. V., Levitov, L. S., Polini, M., Geim, A. K.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group 01.12.2017
Nature Publishing Group (NPG)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Electron-electron (e-e) collisions can impact transport in a variety of surprising and sometimes counterintuitive ways. Despite strong interest, experiments on the subject proved challenging because of the simultaneous presence of different scattering mechanisms that suppress or obscure consequences of e-e scattering. Only recently, sufficiently clean electron systems with transport dominated by e-e collisions have become available, showing behaviour characteristic of highly viscous fluids. Here we study electron transport through graphene constrictions and show that their conductance below 150 K increases with increasing temperature, in stark contrast to the metallic character of doped graphene. Notably, the measured conductance exceeds the maximum conductance possible for free electrons. This anomalous behaviour is attributed to collective movement of interacting electrons, which 'shields' individual carriers from momentum loss at sample boundaries. The measurements allow us to identify the conductance contribution arising due to electron viscosity and determine its temperature dependence. Besides fundamental interest, our work shows that viscous effects can facilitate high-mobility transport at elevated temperatures, a potentially useful behaviour for designing graphene-based devices.
Bibliography:SC0001088
USDOE Office of Science (SC)
ISSN:1745-2473
1745-2481
DOI:10.1038/nphys4240