Vibration control for nonlinear overhead crane bridge subject to actuator failures and output constraints
An active robust adaptive fault-tolerant control protocol is studied for reducing vibration of crane bridge system and handling actuator faults and output constraints simultaneously based on a partial differential equation model. The closed-loop system subject to environmental perturbations and actu...
Saved in:
Published in | Nonlinear dynamics Vol. 101; no. 1; pp. 419 - 438 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.07.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An active robust adaptive fault-tolerant control protocol is studied for reducing vibration of crane bridge system and handling actuator faults and output constraints simultaneously based on a partial differential equation model. The closed-loop system subject to environmental perturbations and actuator failures can be stabilized with proposed control laws. Furthermore, output constraints of trolley can always be ensured via employing barrier Lyapunov function (BLF), and uncertain actuator faults can also be compensated availably using developed adaptive control laws without any knowledge of actuator fault information. Finally, numerical simulation is provided for illustrating performance of the proposed control method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-020-05778-1 |