Certified Quantum Random Numbers from Untrusted Light

A remarkable aspect of quantum theory is that certain measurement outcomes are entirely unpredictable to all possible observers. Such quantum events can be harnessed to generate numbers whose randomness is asserted based upon the underlying physical processes. We formally introduce, design, and expe...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 10; no. 4; p. 041048
Main Authors Drahi, David, Walk, Nathan, Hoban, Matty J., Fedorov, Aleksey K., Shakhovoy, Roman, Feimov, Akky, Kurochkin, Yury, Kolthammer, W. Steven, Nunn, Joshua, Barrett, Jonathan, Walmsley, Ian A.
Format Journal Article
LanguageEnglish
Published College Park American Physical Society 09.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A remarkable aspect of quantum theory is that certain measurement outcomes are entirely unpredictable to all possible observers. Such quantum events can be harnessed to generate numbers whose randomness is asserted based upon the underlying physical processes. We formally introduce, design, and experimentally demonstrate an ultrafast optical quantum random number generator that uses a totally untrusted photonic source. While considering completely general quantum attacks, we certify and generate in real time random numbers at a rate of8.05Gb/swith a composable security parameter of10−10. Composable security is the most stringent and useful security paradigm because any given protocol remains secure even if arbitrarily combined with other instances of the same, or other, protocols, thereby allowing the generated randomness to be utilized for arbitrary applications in cryptography and beyond. This work achieves the fastest generation of composably secure quantum random numbers ever reported.
ISSN:2160-3308
2160-3308
DOI:10.1103/PhysRevX.10.041048