A deep learning–based method for the design of microstructural materials

Due to their designable properties, microstructural materials have emerged as an important class of materials that have the potential for used in a variety of applications. The design of such materials is challenged by the multifunctionality requirements and various constraints stemmed from manufact...

Full description

Saved in:
Bibliographic Details
Published inStructural and multidisciplinary optimization Vol. 61; no. 4; pp. 1417 - 1438
Main Authors Tan, Ren Kai, Zhang, Nevin L., Ye, Wenjing
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to their designable properties, microstructural materials have emerged as an important class of materials that have the potential for used in a variety of applications. The design of such materials is challenged by the multifunctionality requirements and various constraints stemmed from manufacturing limitations and other practical considerations. Traditional design methods such as those based on topological optimization techniques rely heavily on high-dimensional physical simulations and can be inefficient. In addition, it is difficult to impose geometrical constraints in those methods. In this work, we propose a deep learning model based on deep convolutional generative adversarial network (DCGAN) and convolutional neural network (CNN) for the design of microstructural materials. The DCGAN is used to generate design candidates that satisfy geometrical constraints and the CNN is used as a surrogate model to link the microstructure to its properties. Once trained, the two networks are combined to form the design network which is utilized to for the inverse design. The advantages of the method include its high efficiency and the simplicity in handling geometrical constraints. In addition, no high-dimensional sensitivity simulations are required. The performance of the method is demonstrated on the design of microstructural materials with desired compliance tensor, subject to specified geometrical constraints.
AbstractList Due to their designable properties, microstructural materials have emerged as an important class of materials that have the potential for used in a variety of applications. The design of such materials is challenged by the multifunctionality requirements and various constraints stemmed from manufacturing limitations and other practical considerations. Traditional design methods such as those based on topological optimization techniques rely heavily on high-dimensional physical simulations and can be inefficient. In addition, it is difficult to impose geometrical constraints in those methods. In this work, we propose a deep learning model based on deep convolutional generative adversarial network (DCGAN) and convolutional neural network (CNN) for the design of microstructural materials. The DCGAN is used to generate design candidates that satisfy geometrical constraints and the CNN is used as a surrogate model to link the microstructure to its properties. Once trained, the two networks are combined to form the design network which is utilized to for the inverse design. The advantages of the method include its high efficiency and the simplicity in handling geometrical constraints. In addition, no high-dimensional sensitivity simulations are required. The performance of the method is demonstrated on the design of microstructural materials with desired compliance tensor, subject to specified geometrical constraints.
Author Tan, Ren Kai
Zhang, Nevin L.
Ye, Wenjing
Author_xml – sequence: 1
  givenname: Ren Kai
  surname: Tan
  fullname: Tan, Ren Kai
  organization: Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology
– sequence: 2
  givenname: Nevin L.
  surname: Zhang
  fullname: Zhang, Nevin L.
  organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology
– sequence: 3
  givenname: Wenjing
  orcidid: 0000-0003-1001-8880
  surname: Ye
  fullname: Ye, Wenjing
  email: mewye@ust.hk
  organization: Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology
BookMark eNp9kL1OwzAUhS1UJNrCCzBZYg7Y-bMzVhW_qsQCEpvlONetq8QptjOw8Q68IU-CSxBIDJ3OHc53z9GZoYntLSB0TsklJYRdeUJowRNCq4SkeZon6RGa0pIWCc05n_ze7OUEzbzfEkI4yaspeljgBmCHW5DOGrv-fP-opYcGdxA2fYN173DYQDR5s7a417gzyvU-uEGFwckWdzKAM7L1p-hYR4GzH52j55vrp-Vdsnq8vV8uVonKeBESxriugZW6VrKsM5kzDhklTa1SLkmqtQRaaq6KDHTFKVN7Z9FUXOWKKaazOboY_-5c_zqAD2LbD87GSJHGBM7zsuDRlY6ufVvvQIudM510b4ISsd9MjJuJuJn43izSc8T_QcoEGUxvg5OmPYxmI-pjjl2D-2t1gPoCvkyE6g
CitedBy_id crossref_primary_10_1016_j_oceaneng_2023_115788
crossref_primary_10_1016_j_cma_2021_114197
crossref_primary_10_1016_j_autcon_2022_104492
crossref_primary_10_1016_j_actamat_2024_119877
crossref_primary_10_1115_1_4063824
crossref_primary_10_1115_1_4053859
crossref_primary_10_1007_s10845_023_02139_8
crossref_primary_10_1007_s00158_020_02537_z
crossref_primary_10_1007_s00158_021_02851_0
crossref_primary_10_1016_j_engappai_2022_105715
crossref_primary_10_1016_j_eml_2023_101985
crossref_primary_10_3390_s23156750
crossref_primary_10_1016_j_jpowsour_2024_234410
crossref_primary_10_34133_bmef_0030
crossref_primary_10_1007_s00158_020_02659_4
crossref_primary_10_1007_s00158_022_03456_x
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122313
crossref_primary_10_1016_j_matdes_2020_109180
crossref_primary_10_1016_j_ijmecsci_2023_108850
crossref_primary_10_20517_microstructures_2023_29
crossref_primary_10_1007_s00158_022_03180_6
crossref_primary_10_1007_s11831_025_10264_1
crossref_primary_10_1007_s12206_022_0628_2
crossref_primary_10_1016_j_engappai_2023_106413
crossref_primary_10_3390_ma15010118
crossref_primary_10_1016_j_ast_2021_107101
crossref_primary_10_1016_j_matdes_2024_113506
crossref_primary_10_2139_ssrn_4091162
crossref_primary_10_1016_j_compositesb_2021_109282
crossref_primary_10_3389_fbioe_2022_973275
crossref_primary_10_1007_s00158_021_02926_y
crossref_primary_10_1088_2515_7639_ad33a4
crossref_primary_10_1016_j_eml_2022_101635
crossref_primary_10_1016_j_jmrt_2023_10_200
crossref_primary_10_1016_j_engappai_2025_110473
crossref_primary_10_1002_adem_202401299
crossref_primary_10_1016_j_compstruct_2023_117320
crossref_primary_10_1002_adfm_202404165
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124849
crossref_primary_10_1016_j_inffus_2023_102217
crossref_primary_10_1016_j_commatsci_2024_113064
crossref_primary_10_1016_j_ijmecsci_2024_109530
crossref_primary_10_1080_17543266_2024_2447031
crossref_primary_10_3389_fbioe_2022_985688
crossref_primary_10_3390_en15124489
crossref_primary_10_1016_j_actamat_2024_120600
crossref_primary_10_1016_j_engappai_2021_104560
crossref_primary_10_1038_s41524_023_01037_0
crossref_primary_10_3389_fmats_2022_851085
crossref_primary_10_1007_s11831_024_10100_y
crossref_primary_10_1016_j_pmatsci_2023_101165
crossref_primary_10_1121_10_0005545
crossref_primary_10_1038_s41598_024_59252_8
crossref_primary_10_1063_5_0065298
crossref_primary_10_1002_adfm_202005285
crossref_primary_10_1515_nanoph_2021_0639
crossref_primary_10_1080_15376494_2022_2129888
crossref_primary_10_1002_adfm_202206309
crossref_primary_10_1121_10_0008929
crossref_primary_10_3390_polym15020281
crossref_primary_10_1016_j_addma_2024_104577
crossref_primary_10_1016_j_cja_2023_02_001
crossref_primary_10_1016_j_conbuildmat_2023_130704
crossref_primary_10_1002_adma_202302530
crossref_primary_10_1007_s00521_023_08751_2
crossref_primary_10_1088_1361_651X_ad073a
crossref_primary_10_1002_adts_202300218
crossref_primary_10_1002_prep_202200276
crossref_primary_10_1016_j_ijmecsci_2025_109927
crossref_primary_10_1177_02670836241308470
crossref_primary_10_1108_EC_10_2022_0639
crossref_primary_10_1007_s00158_022_03369_9
crossref_primary_10_1002_aenm_202003908
crossref_primary_10_1016_j_istruc_2023_105349
crossref_primary_10_1016_j_actamat_2021_117548
crossref_primary_10_1016_j_matdes_2024_113087
crossref_primary_10_1364_JOSAB_424724
crossref_primary_10_1002_smll_202406153
crossref_primary_10_1016_j_aei_2023_102240
crossref_primary_10_1016_j_taml_2024_100490
crossref_primary_10_1016_j_mtcomm_2024_110634
crossref_primary_10_1007_s00158_020_02819_6
crossref_primary_10_1038_s41524_022_00938_w
Cites_doi 10.1016/j.cad.2010.09.009
10.1162/neco.1993.5.3.419
10.1016/j.cma.2018.10.034
10.1007/978-3-319-63309-1_7
10.1038/ncomms6510
10.1109/ICASSP.2012.6288864
10.1016/j.cma.2017.07.004
10.31614/cmes.2018.04452
10.1115/DETC2018-85339
10.1007/s00158-016-1563-6
10.1109/5.726791
10.1103/PhysRevE.69.030201
10.1016/j.commatsci.2018.03.074
10.1038/nmat1644
10.1186/s40192-015-0042-z
10.1007/s00158-018-2101-5
10.1115/1.4027609
10.1007/BF01650949
10.1016/j.cma.2016.06.027
10.1016/j.actamat.2015.02.045
10.1115/1.4041319
10.1038/s41598-018-31571-7
10.1063/1.3299007
10.1109/CVPR.2017.19
10.1109/ICCV.2017.304
10.1007/978-1-4020-9741-6_14
10.1016/S0045-7825(02)00559-5
10.1006/jcph.2001.6789
10.1002/nme.1536
10.1016/j.cma.2015.05.004
10.1007/BF01742597
10.1007/978-1-4615-0377-4_5
10.1007/s004190050248
10.1016/j.cma.2017.03.037
10.1038/nmat2881
10.2514/6.2018-0804
10.1016/j.cma.2017.03.007
10.1007/s00419-015-1106-4
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00158-019-02424-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
EndPage 1438
ExternalDocumentID 10_1007_s00158_019_02424_2
GrantInformation_xml – fundername: The Hong Kong Research Grants Council under Competitive Earmarked Research Grant
  grantid: 16212318
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c385t-778fbe76fbca6b3a478e310dbc28a02ffae16f8c53ef9817c6fbc5d98c4c7c7f3
IEDL.DBID U2A
ISSN 1615-147X
IngestDate Fri Jul 25 10:55:40 EDT 2025
Tue Jul 01 01:31:43 EDT 2025
Thu Apr 24 23:08:18 EDT 2025
Fri Feb 21 02:35:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Microstructural materials
Material design
Convolutional neural network
Generative adversarial network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-778fbe76fbca6b3a478e310dbc28a02ffae16f8c53ef9817c6fbc5d98c4c7c7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1001-8880
PQID 2385884658
PQPubID 2043658
PageCount 22
ParticipantIDs proquest_journals_2385884658
crossref_primary_10_1007_s00158_019_02424_2
crossref_citationtrail_10_1007_s00158_019_02424_2
springer_journals_10_1007_s00158_019_02424_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References RongJYeWTopology optimization design scheme for broadband non-resonant hyperbolic elastic metamaterialsComput Methods Appl Mech Eng201934481983638800611440.7431010.1016/j.cma.2018.10.034
LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc IEEE199886112278232410.1109/5.726791
YangZDaiHMChanNHMaGCShengPAcoustic metamaterial panels for sound attenuation in the 50-1000 Hz regimeAppl Phys Lett20109604190610.1063/1.3299007
VillanuevaCHMauteKCutFEM topology optimization of 3D laminar incompressible flow problemsComput Methods Appl Mech Eng201732044447336463611439.7429710.1016/j.cma.2017.03.007
Yan F, Chan YC, Saboo A, Shah J, Olson GB, Chen W (2018) Data-driven prediction of mechanical properties in support of rapid certification of additively manufactured alloys. Comput Model Eng Sci:343–366
VazLHintonEFE-shape sensitivity of elastoplastic responseStruct Multidiscip Optim199510323123810.1007/BF01742597
Sosnovik I, Oseledets I (2017) Neural networks for topology optimization. arXiv preprint arXiv:1709.09578
Kodali N, Abernethy J, Hays J, Kira Z (2017) How to train your DRAGAN. arXiv preprint arXiv:1705.07215, 2(4)
Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Shi W (2017) Photo-realistic single image super-resolution using a generative adversarial network. In CVPR Vol. 2, No. 3, p. 4
WangSWangMYRadial basis functions and level set method for structural topology optimizationInt J Numer Methods Eng200665122060209022089401174.7433110.1002/nme.1536
WangMYWangXGuoDA level set method for structural topology optimizationComput Methods Appl Mech Eng20031921-222724619514081083.7457310.1016/S0045-7825(02)00559-5
BendsøeMPOptimal shape design as a material distribution problemStructural optimization19891419320210.1007/BF01650949
Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
GuptaACecenAGoyalSSinghAKKalidindiSRStructure–property linkages using a data science approach: application to a non-metallic inclusion/steel composite systemActa Mater20159123925410.1016/j.actamat.2015.02.045
Zeiler MD, Fergus R (2013) Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint arXiv:1301.3557
LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, Jackel LD (1990) Handwritten digit recognition with a back-propagation network. In Advances in neural information processing systems, pp. 396-404
LiuRYabansuYCAgrawalAKalidindiSRChoudharyANMachine learning approaches for elastic localization linkages in high-contrast composite materialsIntegrating Materials and Manufacturing Innovation2015411310.1186/s40192-015-0042-z
BessaMABostanabadRLiuZHuAApleyDWBrinsonCLiuWKA framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionalityComput Methods Appl Mech Eng201732063366736463681439.7401410.1016/j.cma.2017.03.037
MartinGLCentered-object integrated segmentation and recognition of overlapping handprinted charactersNeural Comput19935341942910.1162/neco.1993.5.3.419
Li X, Yang Z, Brinson LC, Choudhary A, Agrawal A, Chen W (2018a) A deep adversarial learning methodology for designing microstructural material systems. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2018, Paper No. DETC2018-85633, pp. V02BT03A008. American Society of Mechanical Engineers
OsherSJSantosaFLevel set methods for optimization problems involving geometry and constraints: I. frequencies of a two-density inhomogeneous drumJ Comput Phys2001171127228818436481056.7406110.1006/jcph.2001.6789
LeiXLiuCDuZZhangWGuoXMachine learning-driven real-time topology optimization under moving morphable component-based frameworkJ Appl Mech201986101100410.1115/1.4041319
Li X, Zhang Y, Zhao H, Burkhart C, Brinson LC, Chen W (2018b) A transfer learning approach for microstructure reconstruction and structure-property predictions. Scientific reports, 8
Liu Q, Zhang N, Yang W, Wang S, Cui Z, Chen X, Chen L (2017) A review of image recognition with deep convolutional neural network. In International Conference on Intelligent Computing (pp. 69-80). Springer, Cham
McDowellDLOlsonGBConcurrent design of hierarchical materials and structures. Scientific Modeling and Simulations2008DordrechtSpringer20724010.1007/978-1-4020-9741-6_14
NakshatralaPTortorelliDTopology optimization for effective energy propagation in rate-independent elastoplastic material systemsComput Methods Appl Mech Eng201529530532633888361423.7475510.1016/j.cma.2015.05.004
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097-1105
Chen W, Jeyaseelan A, Fuge M (2018) Synthesizing designs with inter-part dependencies using hierarchical generative adversarial networks. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME, Quebec City, Canada
Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In International Conference on Machine Learning. pp. 214-223
LazarovBSWangFSigmundOLength scale and manufacturability in density-based topology optimizationArch Appl Mech2016861-218921810.1007/s00419-015-1106-4
Mao X, Li Q, Xie H, Lau RY, Wang Z, Smolley SP (2017) Least squares generative adversarial networks. In Computer Vision (ICCV), 2017 IEEE International Conference on (pp. 2813-2821). IEEE
ZhangWZhouYZhuJA comprehensive study of feature definitions with solids and voids for topology optimizationComput Methods Appl Mech Eng201732528931336934291439.7431010.1016/j.cma.2017.07.004
KrishSA practical generative design methodComput Aided Des20114318810010.1016/j.cad.2010.09.009
Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784
Zhao J, Mathieu M, LeCun Y (2016) Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126
Abdel-Hamid O, Mohamed AR, Jiang H, Penn G (2012) Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on (pp. 4277-4280). IEEE
GuoXZhangWZhongWDoing topology optimization explicitly and geometrically—a new moving morphable components based frameworkJ Appl Mech201481808100910.1115/1.4027609
WangSCArtificial neural networkInterdisciplinary computing in java programming2003BostonSpringer8110010.1007/978-1-4615-0377-4_5
LiangBGuoXSTuJZhangDChenJCAn acoustic rectifierNat Mater2010998999210.1038/nmat2881
HuXShenYLiuXFuRZiJSuperlensing effect in liquid surface wavesPhys Rev E20046903020110.1103/PhysRevE.69.030201
Zhang Y, Ye W (2018) Deep learning based inverse method for layout design. Structural and Multidisciplinary Optimization: 1-10
LohanDJDedeEMAllisonJTTopology optimization for heat conduction using generative design algorithmsStruct Multidiscip Optim201755310631077362080510.1007/s00158-016-1563-6
CangRLiHYaoHJiaoYRenYImproving direct physical properties prediction of heterogeneous materials from imaging data via convolutional neural network and a morphology-aware generative modelComput Mater Sci201815021222110.1016/j.commatsci.2018.03.074
Krizhevsky A, Hinton G (2010) Convolutional deep belief networks on cifar-10. Unpublished manuscript, 40(7)
Yu Y, Hur T, Jung J, Jang IG (2019) Deep learning for determining a near-optimal topological design without any iteration. Struct Multidiscip Optim 59(3):787–799
ZhuRLiuXNHuGKSunCTHuangGLNegative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterialsNat Commun20145551010.1038/ncomms6510
Reed S, Akata Z, Yan X, Logeswaran L, Schiele B, Lee H (2016) Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396
Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
BendsøeMPSigmundOMaterial interpolation schemes in topology optimizationArch Appl Mech1999699-106356540957.7403710.1007/s004190050248
Goodfellow I et al. (2014) Generative adversarial nets. In Advances in neural information processing systems: 2672-2680
ZhouYZhangWZhuJXuZFeature-driven topology optimization method with signed distance functionComput Methods Appl Mech Eng201631013235485491439.7431510.1016/j.cma.2016.06.027
Guo T, Lohan DJ, Cang R, Ren MY, Allison JT (2018) An indirect design representation for topology optimization using variational autoencoder and style transfer. In: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 2018, p. 0804
Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X (2006) Ultrasonic metamaterials with negative modulus. Nat Mater 5(6)
MP Bendsøe (2424_CR4) 1999; 69
2424_CR11
MA Bessa (2424_CR5) 2017; 320
SJ Osher (2424_CR35) 2001; 171
2424_CR14
2424_CR15
W Zhang (2424_CR50) 2017; 325
2424_CR51
S Krish (2424_CR16) 2011; 43
Y LeCun (2424_CR21) 1998; 86
2424_CR17
2424_CR18
GL Martin (2424_CR31) 1993; 5
Y Zhou (2424_CR52) 2016; 310
X Lei (2424_CR23) 2019; 86
2424_CR45
X Hu (2424_CR13) 2004; 69
2424_CR47
2424_CR48
2424_CR49
S Wang (2424_CR43) 2006; 65
DJ Lohan (2424_CR29) 2017; 55
MP Bendsøe (2424_CR3) 1989; 1
DL McDowell (2424_CR32) 2008
L Vaz (2424_CR40) 1995; 10
A Gupta (2424_CR12) 2015; 91
2424_CR33
BS Lazarov (2424_CR19) 2016; 86
2424_CR36
2424_CR37
MY Wang (2424_CR44) 2003; 192
SC Wang (2424_CR42) 2003
R Cang (2424_CR6) 2018; 150
X Guo (2424_CR10) 2014; 81
2424_CR30
2424_CR39
CH Villanueva (2424_CR41) 2017; 320
2424_CR20
2424_CR22
2424_CR24
2424_CR25
R Zhu (2424_CR53) 2014; 5
2424_CR2
P Nakshatrala (2424_CR34) 2015; 295
Z Yang (2424_CR46) 2010; 96
2424_CR8
2424_CR9
B Liang (2424_CR26) 2010; 9
2424_CR7
2424_CR28
2424_CR1
R Liu (2424_CR27) 2015; 4
J Rong (2424_CR38) 2019; 344
References_xml – reference: LeiXLiuCDuZZhangWGuoXMachine learning-driven real-time topology optimization under moving morphable component-based frameworkJ Appl Mech201986101100410.1115/1.4041319
– reference: Li X, Zhang Y, Zhao H, Burkhart C, Brinson LC, Chen W (2018b) A transfer learning approach for microstructure reconstruction and structure-property predictions. Scientific reports, 8
– reference: WangSWangMYRadial basis functions and level set method for structural topology optimizationInt J Numer Methods Eng200665122060209022089401174.7433110.1002/nme.1536
– reference: BessaMABostanabadRLiuZHuAApleyDWBrinsonCLiuWKA framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionalityComput Methods Appl Mech Eng201732063366736463681439.7401410.1016/j.cma.2017.03.037
– reference: Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X (2006) Ultrasonic metamaterials with negative modulus. Nat Mater 5(6)
– reference: Liu Q, Zhang N, Yang W, Wang S, Cui Z, Chen X, Chen L (2017) A review of image recognition with deep convolutional neural network. In International Conference on Intelligent Computing (pp. 69-80). Springer, Cham
– reference: McDowellDLOlsonGBConcurrent design of hierarchical materials and structures. Scientific Modeling and Simulations2008DordrechtSpringer20724010.1007/978-1-4020-9741-6_14
– reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097-1105
– reference: MartinGLCentered-object integrated segmentation and recognition of overlapping handprinted charactersNeural Comput19935341942910.1162/neco.1993.5.3.419
– reference: LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, Jackel LD (1990) Handwritten digit recognition with a back-propagation network. In Advances in neural information processing systems, pp. 396-404
– reference: ZhouYZhangWZhuJXuZFeature-driven topology optimization method with signed distance functionComput Methods Appl Mech Eng201631013235485491439.7431510.1016/j.cma.2016.06.027
– reference: LiuRYabansuYCAgrawalAKalidindiSRChoudharyANMachine learning approaches for elastic localization linkages in high-contrast composite materialsIntegrating Materials and Manufacturing Innovation2015411310.1186/s40192-015-0042-z
– reference: Li X, Yang Z, Brinson LC, Choudhary A, Agrawal A, Chen W (2018a) A deep adversarial learning methodology for designing microstructural material systems. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2018, Paper No. DETC2018-85633, pp. V02BT03A008. American Society of Mechanical Engineers
– reference: CangRLiHYaoHJiaoYRenYImproving direct physical properties prediction of heterogeneous materials from imaging data via convolutional neural network and a morphology-aware generative modelComput Mater Sci201815021222110.1016/j.commatsci.2018.03.074
– reference: YangZDaiHMChanNHMaGCShengPAcoustic metamaterial panels for sound attenuation in the 50-1000 Hz regimeAppl Phys Lett20109604190610.1063/1.3299007
– reference: Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784
– reference: Abdel-Hamid O, Mohamed AR, Jiang H, Penn G (2012) Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on (pp. 4277-4280). IEEE
– reference: Goodfellow I et al. (2014) Generative adversarial nets. In Advances in neural information processing systems: 2672-2680
– reference: Zhang Y, Ye W (2018) Deep learning based inverse method for layout design. Structural and Multidisciplinary Optimization: 1-10
– reference: GuptaACecenAGoyalSSinghAKKalidindiSRStructure–property linkages using a data science approach: application to a non-metallic inclusion/steel composite systemActa Mater20159123925410.1016/j.actamat.2015.02.045
– reference: Reed S, Akata Z, Yan X, Logeswaran L, Schiele B, Lee H (2016) Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396
– reference: NakshatralaPTortorelliDTopology optimization for effective energy propagation in rate-independent elastoplastic material systemsComput Methods Appl Mech Eng201529530532633888361423.7475510.1016/j.cma.2015.05.004
– reference: WangMYWangXGuoDA level set method for structural topology optimizationComput Methods Appl Mech Eng20031921-222724619514081083.7457310.1016/S0045-7825(02)00559-5
– reference: LazarovBSWangFSigmundOLength scale and manufacturability in density-based topology optimizationArch Appl Mech2016861-218921810.1007/s00419-015-1106-4
– reference: Yu Y, Hur T, Jung J, Jang IG (2019) Deep learning for determining a near-optimal topological design without any iteration. Struct Multidiscip Optim 59(3):787–799
– reference: Krizhevsky A, Hinton G (2010) Convolutional deep belief networks on cifar-10. Unpublished manuscript, 40(7)
– reference: Zhao J, Mathieu M, LeCun Y (2016) Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126
– reference: HuXShenYLiuXFuRZiJSuperlensing effect in liquid surface wavesPhys Rev E20046903020110.1103/PhysRevE.69.030201
– reference: BendsøeMPOptimal shape design as a material distribution problemStructural optimization19891419320210.1007/BF01650949
– reference: ZhuRLiuXNHuGKSunCTHuangGLNegative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterialsNat Commun20145551010.1038/ncomms6510
– reference: LiangBGuoXSTuJZhangDChenJCAn acoustic rectifierNat Mater2010998999210.1038/nmat2881
– reference: BendsøeMPSigmundOMaterial interpolation schemes in topology optimizationArch Appl Mech1999699-106356540957.7403710.1007/s004190050248
– reference: Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
– reference: OsherSJSantosaFLevel set methods for optimization problems involving geometry and constraints: I. frequencies of a two-density inhomogeneous drumJ Comput Phys2001171127228818436481056.7406110.1006/jcph.2001.6789
– reference: Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
– reference: GuoXZhangWZhongWDoing topology optimization explicitly and geometrically—a new moving morphable components based frameworkJ Appl Mech201481808100910.1115/1.4027609
– reference: VillanuevaCHMauteKCutFEM topology optimization of 3D laminar incompressible flow problemsComput Methods Appl Mech Eng201732044447336463611439.7429710.1016/j.cma.2017.03.007
– reference: ZhangWZhouYZhuJA comprehensive study of feature definitions with solids and voids for topology optimizationComput Methods Appl Mech Eng201732528931336934291439.7431010.1016/j.cma.2017.07.004
– reference: Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In International Conference on Machine Learning. pp. 214-223
– reference: LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc IEEE199886112278232410.1109/5.726791
– reference: Chen W, Jeyaseelan A, Fuge M (2018) Synthesizing designs with inter-part dependencies using hierarchical generative adversarial networks. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME, Quebec City, Canada
– reference: Sosnovik I, Oseledets I (2017) Neural networks for topology optimization. arXiv preprint arXiv:1709.09578
– reference: Zeiler MD, Fergus R (2013) Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint arXiv:1301.3557
– reference: Mao X, Li Q, Xie H, Lau RY, Wang Z, Smolley SP (2017) Least squares generative adversarial networks. In Computer Vision (ICCV), 2017 IEEE International Conference on (pp. 2813-2821). IEEE
– reference: Kodali N, Abernethy J, Hays J, Kira Z (2017) How to train your DRAGAN. arXiv preprint arXiv:1705.07215, 2(4)
– reference: WangSCArtificial neural networkInterdisciplinary computing in java programming2003BostonSpringer8110010.1007/978-1-4615-0377-4_5
– reference: RongJYeWTopology optimization design scheme for broadband non-resonant hyperbolic elastic metamaterialsComput Methods Appl Mech Eng201934481983638800611440.7431010.1016/j.cma.2018.10.034
– reference: KrishSA practical generative design methodComput Aided Des20114318810010.1016/j.cad.2010.09.009
– reference: Yan F, Chan YC, Saboo A, Shah J, Olson GB, Chen W (2018) Data-driven prediction of mechanical properties in support of rapid certification of additively manufactured alloys. Comput Model Eng Sci:343–366
– reference: VazLHintonEFE-shape sensitivity of elastoplastic responseStruct Multidiscip Optim199510323123810.1007/BF01742597
– reference: Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Shi W (2017) Photo-realistic single image super-resolution using a generative adversarial network. In CVPR Vol. 2, No. 3, p. 4
– reference: LohanDJDedeEMAllisonJTTopology optimization for heat conduction using generative design algorithmsStruct Multidiscip Optim201755310631077362080510.1007/s00158-016-1563-6
– reference: Guo T, Lohan DJ, Cang R, Ren MY, Allison JT (2018) An indirect design representation for topology optimization using variational autoencoder and style transfer. In: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 2018, p. 0804
– volume: 43
  start-page: 88
  issue: 1
  year: 2011
  ident: 2424_CR16
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2010.09.009
– ident: 2424_CR9
– volume: 5
  start-page: 419
  issue: 3
  year: 1993
  ident: 2424_CR31
  publication-title: Neural Comput
  doi: 10.1162/neco.1993.5.3.419
– volume: 344
  start-page: 819
  year: 2019
  ident: 2424_CR38
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.10.034
– ident: 2424_CR28
  doi: 10.1007/978-3-319-63309-1_7
– volume: 5
  start-page: 5510
  year: 2014
  ident: 2424_CR53
  publication-title: Nat Commun
  doi: 10.1038/ncomms6510
– ident: 2424_CR1
  doi: 10.1109/ICASSP.2012.6288864
– volume: 325
  start-page: 289
  year: 2017
  ident: 2424_CR50
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.07.004
– ident: 2424_CR39
– ident: 2424_CR45
  doi: 10.31614/cmes.2018.04452
– ident: 2424_CR7
  doi: 10.1115/DETC2018-85339
– volume: 55
  start-page: 1063
  issue: 3
  year: 2017
  ident: 2424_CR29
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-016-1563-6
– ident: 2424_CR2
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 2424_CR21
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– volume: 69
  start-page: 030201
  year: 2004
  ident: 2424_CR13
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.69.030201
– volume: 150
  start-page: 212
  year: 2018
  ident: 2424_CR6
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2018.03.074
– ident: 2424_CR51
– ident: 2424_CR49
– ident: 2424_CR24
– ident: 2424_CR8
  doi: 10.1038/nmat1644
– volume: 4
  start-page: 13
  issue: 1
  year: 2015
  ident: 2424_CR27
  publication-title: Integrating Materials and Manufacturing Innovation
  doi: 10.1186/s40192-015-0042-z
– ident: 2424_CR47
  doi: 10.1007/s00158-018-2101-5
– ident: 2424_CR17
– volume: 81
  start-page: 081009
  issue: 8
  year: 2014
  ident: 2424_CR10
  publication-title: J Appl Mech
  doi: 10.1115/1.4027609
– ident: 2424_CR48
– volume: 1
  start-page: 193
  issue: 4
  year: 1989
  ident: 2424_CR3
  publication-title: Structural optimization
  doi: 10.1007/BF01650949
– ident: 2424_CR33
– volume: 310
  start-page: 1
  year: 2016
  ident: 2424_CR52
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2016.06.027
– volume: 91
  start-page: 239
  year: 2015
  ident: 2424_CR12
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2015.02.045
– volume: 86
  start-page: 011004
  issue: 1
  year: 2019
  ident: 2424_CR23
  publication-title: J Appl Mech
  doi: 10.1115/1.4041319
– ident: 2424_CR25
  doi: 10.1038/s41598-018-31571-7
– volume: 96
  start-page: 041906
  year: 2010
  ident: 2424_CR46
  publication-title: Appl Phys Lett
  doi: 10.1063/1.3299007
– ident: 2424_CR18
– ident: 2424_CR20
– ident: 2424_CR22
  doi: 10.1109/CVPR.2017.19
– ident: 2424_CR30
  doi: 10.1109/ICCV.2017.304
– ident: 2424_CR37
– ident: 2424_CR14
– start-page: 207
  volume-title: Concurrent design of hierarchical materials and structures. Scientific Modeling and Simulations
  year: 2008
  ident: 2424_CR32
  doi: 10.1007/978-1-4020-9741-6_14
– volume: 192
  start-page: 227
  issue: 1-2
  year: 2003
  ident: 2424_CR44
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(02)00559-5
– volume: 171
  start-page: 272
  issue: 1
  year: 2001
  ident: 2424_CR35
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2001.6789
– volume: 65
  start-page: 2060
  issue: 12
  year: 2006
  ident: 2424_CR43
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1536
– volume: 295
  start-page: 305
  year: 2015
  ident: 2424_CR34
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2015.05.004
– volume: 10
  start-page: 231
  issue: 3
  year: 1995
  ident: 2424_CR40
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/BF01742597
– start-page: 81
  volume-title: Interdisciplinary computing in java programming
  year: 2003
  ident: 2424_CR42
  doi: 10.1007/978-1-4615-0377-4_5
– ident: 2424_CR15
– volume: 69
  start-page: 635
  issue: 9-10
  year: 1999
  ident: 2424_CR4
  publication-title: Arch Appl Mech
  doi: 10.1007/s004190050248
– volume: 320
  start-page: 633
  year: 2017
  ident: 2424_CR5
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.03.037
– volume: 9
  start-page: 989
  year: 2010
  ident: 2424_CR26
  publication-title: Nat Mater
  doi: 10.1038/nmat2881
– ident: 2424_CR36
– ident: 2424_CR11
  doi: 10.2514/6.2018-0804
– volume: 320
  start-page: 444
  year: 2017
  ident: 2424_CR41
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.03.007
– volume: 86
  start-page: 189
  issue: 1-2
  year: 2016
  ident: 2424_CR19
  publication-title: Arch Appl Mech
  doi: 10.1007/s00419-015-1106-4
SSID ssj0008049
Score 2.5516536
Snippet Due to their designable properties, microstructural materials have emerged as an important class of materials that have the potential for used in a variety of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1417
SubjectTerms Artificial neural networks
Computational Mathematics and Numerical Analysis
Computer simulation
Deep learning
Engineering
Engineering Design
Inverse design
Machine learning
Microstructure
Optimization
Optimization techniques
Research Paper
Tensors
Theoretical and Applied Mechanics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTsMwELWg3cAC8RWFgrxgBxaN49jOChVEVVWiQohK3UX-soG2qD0Ad-CGnARP4rSARNeZePHGmXmxZ-YhdMFSY53PBFE6k4SlNCHKa0q4Cuk-dzIXBpqTH4a8P2KDcTaOB27zWFZZx8QyUNupgTPyawo3WCFZZvJm9k5ANQpuV6OExiZqhhAsZQM1b--Hj0_LWCwrAgy0hiRMjGPbTNk8B3QBCrlyAnmKEfo7Na345p8r0jLz9HbRTqSMuFv5eA9tuMk-2v4xSPAADbrYOjfDUQPi5evjE9KTxZVANA7MFAemF4ygXgNPPX6DQrxqeCwM3sCBuFZ78RCNevfPd30SVRKICZAsAj2WXjvBvTaK61QxIV3gbFYbKlWHeq9cwr00Wep8LhNhwDKzuTTMCCN8eoQak-nEHSOsAh-0LuUdKwyjmoKNzlzOM2qFk7yFkhqgwsQR4qBk8Voshx-XoBYB1KIEtaAtdLl8Z1YN0Fhr3a5xL-LHNC9Wrm-hq9oXq8f_r3ayfrVTtEXh77msw2mjRsDcnQWKsdDncR99A4UPzh8
  priority: 102
  providerName: ProQuest
Title A deep learning–based method for the design of microstructural materials
URI https://link.springer.com/article/10.1007/s00158-019-02424-2
https://www.proquest.com/docview/2385884658
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TgMxELUgaaBAnCIQIhd0YCnr9bXlgnIoiAghIoVq5ZMGkkjJB_AP_CFfgr1XAAES1RY762LsnfeseTMDwDmJtbGOciQVFYjEOELSKYyY9HCfWJFwHYqTb8dsOCGjKZ2WRWHLSu1epSTzSF0XuwV4D8KrBAVcIcgH3ib1d_cg5JrgtI6_oiC9gcqgiPBpWSrz8xpf4WjNMb-lRXO06e-CnZImwrTY1z2wYWf7YPtT88ADMEqhsXYBy7kPT--vbwGSDCyGQkPPRqFnd94oaDTg3MGXIL4rGsaGZhvQk9Xi_B2CSb_3cD1E5WQEpGNBV54SC6csZ05pyVQsCRfW8zSjNBayi52TNmJOaBpbl4iI62BJTSI00VxzFx-Bxmw-s8cASs8BjY1Z13BNsMLBRlGbMIoNt4K1QFQ5KNNl2_AwveI5qxse507NvFOz3KkZboGL-ptF0TTjT-t25fes_IGWGQ4JS8-NqGiBy2ov1q9_X-3kf-anYAuHG3SuxWmDht8De-Zpxkp1wKboDzqgmQ4eb3r-edUb39138rP2AXwVzYw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JThtBEC055pBwQJBFcTChD8kpaYXp6enuOSBkEYxZTyD5NpneuATbEUhRbvwD_8FH8SVUzWInkeDGeWrq8Lqm3-vpWgA-ydT5EDPNS5sZLlOR8DJawVWJdJ8Hk2tHxcknp2p0Lg_H2bgDd20tDKVVtntitVH7qaN_5N8E3WAhWWZmZ_aL09Qoul1tR2jUYXEU_vzGI9vV9sF3XN_PQgz3znZHvJkqwB26uEY5aaINWkXrSmXTUmoTUON464Qpt0SMZUhUNC5LQ8xNoh1ZZj43TjrtdEzR7wtYkikyOVWmD_fnO7-p5TaJKJ5IPW6KdKpSPRInlDaWc2JFycW_RLhQt_9dyFY8N1yFlUagskEdUWvQCZPXsPxX28I3cDhgPoQZayZOXNzf3BIZelaPo2aogxnqSjSi7BA2jeyS0v7qVrXU5oOhTK4j_y2cPwt676A7mU7Ce2Alqk8fUrXltZPCCrKxWchVJrwORvUgaQEqXNOwnOZm_CzmrZYrUAsEtahALUQPvszfmdXtOp607re4F82ne1UsAq0HX9u1WDx-3NuHp71twsvR2clxcXxwerQOrwSd26sMoD50Ef-wgeLm2n6sIorBj-cO4QeihQxQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TgMxELVQkBAUiFMEArigAytZr68tIyAKASIKIqWzfNLAJhL5AP6BP-RLsPdIAgIk6p11MTPreauZ9waAM5Ia6zzlSGkqEElxgpTXGDEVyn3mRMZNJCffD1l_RAZjOl5i8RfT7nVLsuQ0RJWmfNaeWt-eE99iqY9DWBmKNYagcAmvksgGDhk9wt35XSxKABxhDUoIH1e0mZ_P-FqaFnjzW4u0qDy9LbBZQUbYLWO8DVZcvgM2loQEd8GgC61zU1jtgHj6eHuP5cnCckE0DMgUBqQXjOK8Bpx4-BIH8Urx2Ci8AQNwLXNxD4x614-XfVRtSUAmFXQW4LHw2nHmtVFMp4pw4QJms9pgoTrYe-US5oWhqfOZSLiJltRmwhDDDffpPmjkk9wdAKgCHrQuZR3LDcEaRxtNXcYottwJ1gRJ7SBpKgnxuMniWc7FjwunyuBUWThV4iY4n78zLQU0_rRu1X6X1cf0KnFsXgacREUTXNSxWDz-_bTD_5mfgrWHq568uxneHoF1HH-sixGdFmiEcLjjgD5m-qRIsE-YANCe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning%E2%80%93based+method+for+the+design+of+microstructural+materials&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Tan%2C+Ren+Kai&rft.au=Zhang%2C+Nevin+L.&rft.au=Ye%2C+Wenjing&rft.date=2020-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=61&rft.issue=4&rft.spage=1417&rft.epage=1438&rft_id=info:doi/10.1007%2Fs00158-019-02424-2&rft.externalDocID=10_1007_s00158_019_02424_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon