A deep learning–based method for the design of microstructural materials
Due to their designable properties, microstructural materials have emerged as an important class of materials that have the potential for used in a variety of applications. The design of such materials is challenged by the multifunctionality requirements and various constraints stemmed from manufact...
Saved in:
Published in | Structural and multidisciplinary optimization Vol. 61; no. 4; pp. 1417 - 1438 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to their designable properties, microstructural materials have emerged as an important class of materials that have the potential for used in a variety of applications. The design of such materials is challenged by the multifunctionality requirements and various constraints stemmed from manufacturing limitations and other practical considerations. Traditional design methods such as those based on topological optimization techniques rely heavily on high-dimensional physical simulations and can be inefficient. In addition, it is difficult to impose geometrical constraints in those methods. In this work, we propose a deep learning model based on deep convolutional generative adversarial network (DCGAN) and convolutional neural network (CNN) for the design of microstructural materials. The DCGAN is used to generate design candidates that satisfy geometrical constraints and the CNN is used as a surrogate model to link the microstructure to its properties. Once trained, the two networks are combined to form the design network which is utilized to for the inverse design. The advantages of the method include its high efficiency and the simplicity in handling geometrical constraints. In addition, no high-dimensional sensitivity simulations are required. The performance of the method is demonstrated on the design of microstructural materials with desired compliance tensor, subject to specified geometrical constraints. |
---|---|
AbstractList | Due to their designable properties, microstructural materials have emerged as an important class of materials that have the potential for used in a variety of applications. The design of such materials is challenged by the multifunctionality requirements and various constraints stemmed from manufacturing limitations and other practical considerations. Traditional design methods such as those based on topological optimization techniques rely heavily on high-dimensional physical simulations and can be inefficient. In addition, it is difficult to impose geometrical constraints in those methods. In this work, we propose a deep learning model based on deep convolutional generative adversarial network (DCGAN) and convolutional neural network (CNN) for the design of microstructural materials. The DCGAN is used to generate design candidates that satisfy geometrical constraints and the CNN is used as a surrogate model to link the microstructure to its properties. Once trained, the two networks are combined to form the design network which is utilized to for the inverse design. The advantages of the method include its high efficiency and the simplicity in handling geometrical constraints. In addition, no high-dimensional sensitivity simulations are required. The performance of the method is demonstrated on the design of microstructural materials with desired compliance tensor, subject to specified geometrical constraints. |
Author | Tan, Ren Kai Zhang, Nevin L. Ye, Wenjing |
Author_xml | – sequence: 1 givenname: Ren Kai surname: Tan fullname: Tan, Ren Kai organization: Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology – sequence: 2 givenname: Nevin L. surname: Zhang fullname: Zhang, Nevin L. organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology – sequence: 3 givenname: Wenjing orcidid: 0000-0003-1001-8880 surname: Ye fullname: Ye, Wenjing email: mewye@ust.hk organization: Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology |
BookMark | eNp9kL1OwzAUhS1UJNrCCzBZYg7Y-bMzVhW_qsQCEpvlONetq8QptjOw8Q68IU-CSxBIDJ3OHc53z9GZoYntLSB0TsklJYRdeUJowRNCq4SkeZon6RGa0pIWCc05n_ze7OUEzbzfEkI4yaspeljgBmCHW5DOGrv-fP-opYcGdxA2fYN173DYQDR5s7a417gzyvU-uEGFwckWdzKAM7L1p-hYR4GzH52j55vrp-Vdsnq8vV8uVonKeBESxriugZW6VrKsM5kzDhklTa1SLkmqtQRaaq6KDHTFKVN7Z9FUXOWKKaazOboY_-5c_zqAD2LbD87GSJHGBM7zsuDRlY6ufVvvQIudM510b4ISsd9MjJuJuJn43izSc8T_QcoEGUxvg5OmPYxmI-pjjl2D-2t1gPoCvkyE6g |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2023_115788 crossref_primary_10_1016_j_cma_2021_114197 crossref_primary_10_1016_j_autcon_2022_104492 crossref_primary_10_1016_j_actamat_2024_119877 crossref_primary_10_1115_1_4063824 crossref_primary_10_1115_1_4053859 crossref_primary_10_1007_s10845_023_02139_8 crossref_primary_10_1007_s00158_020_02537_z crossref_primary_10_1007_s00158_021_02851_0 crossref_primary_10_1016_j_engappai_2022_105715 crossref_primary_10_1016_j_eml_2023_101985 crossref_primary_10_3390_s23156750 crossref_primary_10_1016_j_jpowsour_2024_234410 crossref_primary_10_34133_bmef_0030 crossref_primary_10_1007_s00158_020_02659_4 crossref_primary_10_1007_s00158_022_03456_x crossref_primary_10_1016_j_ijheatmasstransfer_2021_122313 crossref_primary_10_1016_j_matdes_2020_109180 crossref_primary_10_1016_j_ijmecsci_2023_108850 crossref_primary_10_20517_microstructures_2023_29 crossref_primary_10_1007_s00158_022_03180_6 crossref_primary_10_1007_s11831_025_10264_1 crossref_primary_10_1007_s12206_022_0628_2 crossref_primary_10_1016_j_engappai_2023_106413 crossref_primary_10_3390_ma15010118 crossref_primary_10_1016_j_ast_2021_107101 crossref_primary_10_1016_j_matdes_2024_113506 crossref_primary_10_2139_ssrn_4091162 crossref_primary_10_1016_j_compositesb_2021_109282 crossref_primary_10_3389_fbioe_2022_973275 crossref_primary_10_1007_s00158_021_02926_y crossref_primary_10_1088_2515_7639_ad33a4 crossref_primary_10_1016_j_eml_2022_101635 crossref_primary_10_1016_j_jmrt_2023_10_200 crossref_primary_10_1016_j_engappai_2025_110473 crossref_primary_10_1002_adem_202401299 crossref_primary_10_1016_j_compstruct_2023_117320 crossref_primary_10_1002_adfm_202404165 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124849 crossref_primary_10_1016_j_inffus_2023_102217 crossref_primary_10_1016_j_commatsci_2024_113064 crossref_primary_10_1016_j_ijmecsci_2024_109530 crossref_primary_10_1080_17543266_2024_2447031 crossref_primary_10_3389_fbioe_2022_985688 crossref_primary_10_3390_en15124489 crossref_primary_10_1016_j_actamat_2024_120600 crossref_primary_10_1016_j_engappai_2021_104560 crossref_primary_10_1038_s41524_023_01037_0 crossref_primary_10_3389_fmats_2022_851085 crossref_primary_10_1007_s11831_024_10100_y crossref_primary_10_1016_j_pmatsci_2023_101165 crossref_primary_10_1121_10_0005545 crossref_primary_10_1038_s41598_024_59252_8 crossref_primary_10_1063_5_0065298 crossref_primary_10_1002_adfm_202005285 crossref_primary_10_1515_nanoph_2021_0639 crossref_primary_10_1080_15376494_2022_2129888 crossref_primary_10_1002_adfm_202206309 crossref_primary_10_1121_10_0008929 crossref_primary_10_3390_polym15020281 crossref_primary_10_1016_j_addma_2024_104577 crossref_primary_10_1016_j_cja_2023_02_001 crossref_primary_10_1016_j_conbuildmat_2023_130704 crossref_primary_10_1002_adma_202302530 crossref_primary_10_1007_s00521_023_08751_2 crossref_primary_10_1088_1361_651X_ad073a crossref_primary_10_1002_adts_202300218 crossref_primary_10_1002_prep_202200276 crossref_primary_10_1016_j_ijmecsci_2025_109927 crossref_primary_10_1177_02670836241308470 crossref_primary_10_1108_EC_10_2022_0639 crossref_primary_10_1007_s00158_022_03369_9 crossref_primary_10_1002_aenm_202003908 crossref_primary_10_1016_j_istruc_2023_105349 crossref_primary_10_1016_j_actamat_2021_117548 crossref_primary_10_1016_j_matdes_2024_113087 crossref_primary_10_1364_JOSAB_424724 crossref_primary_10_1002_smll_202406153 crossref_primary_10_1016_j_aei_2023_102240 crossref_primary_10_1016_j_taml_2024_100490 crossref_primary_10_1016_j_mtcomm_2024_110634 crossref_primary_10_1007_s00158_020_02819_6 crossref_primary_10_1038_s41524_022_00938_w |
Cites_doi | 10.1016/j.cad.2010.09.009 10.1162/neco.1993.5.3.419 10.1016/j.cma.2018.10.034 10.1007/978-3-319-63309-1_7 10.1038/ncomms6510 10.1109/ICASSP.2012.6288864 10.1016/j.cma.2017.07.004 10.31614/cmes.2018.04452 10.1115/DETC2018-85339 10.1007/s00158-016-1563-6 10.1109/5.726791 10.1103/PhysRevE.69.030201 10.1016/j.commatsci.2018.03.074 10.1038/nmat1644 10.1186/s40192-015-0042-z 10.1007/s00158-018-2101-5 10.1115/1.4027609 10.1007/BF01650949 10.1016/j.cma.2016.06.027 10.1016/j.actamat.2015.02.045 10.1115/1.4041319 10.1038/s41598-018-31571-7 10.1063/1.3299007 10.1109/CVPR.2017.19 10.1109/ICCV.2017.304 10.1007/978-1-4020-9741-6_14 10.1016/S0045-7825(02)00559-5 10.1006/jcph.2001.6789 10.1002/nme.1536 10.1016/j.cma.2015.05.004 10.1007/BF01742597 10.1007/978-1-4615-0377-4_5 10.1007/s004190050248 10.1016/j.cma.2017.03.037 10.1038/nmat2881 10.2514/6.2018-0804 10.1016/j.cma.2017.03.007 10.1007/s00419-015-1106-4 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s00158-019-02424-2 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1615-1488 |
EndPage | 1438 |
ExternalDocumentID | 10_1007_s00158_019_02424_2 |
GrantInformation_xml | – fundername: The Hong Kong Research Grants Council under Competitive Earmarked Research Grant grantid: 16212318 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 2.D 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR _50 ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c385t-778fbe76fbca6b3a478e310dbc28a02ffae16f8c53ef9817c6fbc5d98c4c7c7f3 |
IEDL.DBID | U2A |
ISSN | 1615-147X |
IngestDate | Fri Jul 25 10:55:40 EDT 2025 Tue Jul 01 01:31:43 EDT 2025 Thu Apr 24 23:08:18 EDT 2025 Fri Feb 21 02:35:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Deep learning Microstructural materials Material design Convolutional neural network Generative adversarial network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c385t-778fbe76fbca6b3a478e310dbc28a02ffae16f8c53ef9817c6fbc5d98c4c7c7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1001-8880 |
PQID | 2385884658 |
PQPubID | 2043658 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2385884658 crossref_primary_10_1007_s00158_019_02424_2 crossref_citationtrail_10_1007_s00158_019_02424_2 springer_journals_10_1007_s00158_019_02424_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Structural and multidisciplinary optimization |
PublicationTitleAbbrev | Struct Multidisc Optim |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | RongJYeWTopology optimization design scheme for broadband non-resonant hyperbolic elastic metamaterialsComput Methods Appl Mech Eng201934481983638800611440.7431010.1016/j.cma.2018.10.034 LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc IEEE199886112278232410.1109/5.726791 YangZDaiHMChanNHMaGCShengPAcoustic metamaterial panels for sound attenuation in the 50-1000 Hz regimeAppl Phys Lett20109604190610.1063/1.3299007 VillanuevaCHMauteKCutFEM topology optimization of 3D laminar incompressible flow problemsComput Methods Appl Mech Eng201732044447336463611439.7429710.1016/j.cma.2017.03.007 Yan F, Chan YC, Saboo A, Shah J, Olson GB, Chen W (2018) Data-driven prediction of mechanical properties in support of rapid certification of additively manufactured alloys. Comput Model Eng Sci:343–366 VazLHintonEFE-shape sensitivity of elastoplastic responseStruct Multidiscip Optim199510323123810.1007/BF01742597 Sosnovik I, Oseledets I (2017) Neural networks for topology optimization. arXiv preprint arXiv:1709.09578 Kodali N, Abernethy J, Hays J, Kira Z (2017) How to train your DRAGAN. arXiv preprint arXiv:1705.07215, 2(4) Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Shi W (2017) Photo-realistic single image super-resolution using a generative adversarial network. In CVPR Vol. 2, No. 3, p. 4 WangSWangMYRadial basis functions and level set method for structural topology optimizationInt J Numer Methods Eng200665122060209022089401174.7433110.1002/nme.1536 WangMYWangXGuoDA level set method for structural topology optimizationComput Methods Appl Mech Eng20031921-222724619514081083.7457310.1016/S0045-7825(02)00559-5 BendsøeMPOptimal shape design as a material distribution problemStructural optimization19891419320210.1007/BF01650949 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 GuptaACecenAGoyalSSinghAKKalidindiSRStructure–property linkages using a data science approach: application to a non-metallic inclusion/steel composite systemActa Mater20159123925410.1016/j.actamat.2015.02.045 Zeiler MD, Fergus R (2013) Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint arXiv:1301.3557 LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, Jackel LD (1990) Handwritten digit recognition with a back-propagation network. In Advances in neural information processing systems, pp. 396-404 LiuRYabansuYCAgrawalAKalidindiSRChoudharyANMachine learning approaches for elastic localization linkages in high-contrast composite materialsIntegrating Materials and Manufacturing Innovation2015411310.1186/s40192-015-0042-z BessaMABostanabadRLiuZHuAApleyDWBrinsonCLiuWKA framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionalityComput Methods Appl Mech Eng201732063366736463681439.7401410.1016/j.cma.2017.03.037 MartinGLCentered-object integrated segmentation and recognition of overlapping handprinted charactersNeural Comput19935341942910.1162/neco.1993.5.3.419 Li X, Yang Z, Brinson LC, Choudhary A, Agrawal A, Chen W (2018a) A deep adversarial learning methodology for designing microstructural material systems. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2018, Paper No. DETC2018-85633, pp. V02BT03A008. American Society of Mechanical Engineers OsherSJSantosaFLevel set methods for optimization problems involving geometry and constraints: I. frequencies of a two-density inhomogeneous drumJ Comput Phys2001171127228818436481056.7406110.1006/jcph.2001.6789 LeiXLiuCDuZZhangWGuoXMachine learning-driven real-time topology optimization under moving morphable component-based frameworkJ Appl Mech201986101100410.1115/1.4041319 Li X, Zhang Y, Zhao H, Burkhart C, Brinson LC, Chen W (2018b) A transfer learning approach for microstructure reconstruction and structure-property predictions. Scientific reports, 8 Liu Q, Zhang N, Yang W, Wang S, Cui Z, Chen X, Chen L (2017) A review of image recognition with deep convolutional neural network. In International Conference on Intelligent Computing (pp. 69-80). Springer, Cham McDowellDLOlsonGBConcurrent design of hierarchical materials and structures. Scientific Modeling and Simulations2008DordrechtSpringer20724010.1007/978-1-4020-9741-6_14 NakshatralaPTortorelliDTopology optimization for effective energy propagation in rate-independent elastoplastic material systemsComput Methods Appl Mech Eng201529530532633888361423.7475510.1016/j.cma.2015.05.004 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097-1105 Chen W, Jeyaseelan A, Fuge M (2018) Synthesizing designs with inter-part dependencies using hierarchical generative adversarial networks. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME, Quebec City, Canada Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In International Conference on Machine Learning. pp. 214-223 LazarovBSWangFSigmundOLength scale and manufacturability in density-based topology optimizationArch Appl Mech2016861-218921810.1007/s00419-015-1106-4 Mao X, Li Q, Xie H, Lau RY, Wang Z, Smolley SP (2017) Least squares generative adversarial networks. In Computer Vision (ICCV), 2017 IEEE International Conference on (pp. 2813-2821). IEEE ZhangWZhouYZhuJA comprehensive study of feature definitions with solids and voids for topology optimizationComput Methods Appl Mech Eng201732528931336934291439.7431010.1016/j.cma.2017.07.004 KrishSA practical generative design methodComput Aided Des20114318810010.1016/j.cad.2010.09.009 Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 Zhao J, Mathieu M, LeCun Y (2016) Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126 Abdel-Hamid O, Mohamed AR, Jiang H, Penn G (2012) Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on (pp. 4277-4280). IEEE GuoXZhangWZhongWDoing topology optimization explicitly and geometrically—a new moving morphable components based frameworkJ Appl Mech201481808100910.1115/1.4027609 WangSCArtificial neural networkInterdisciplinary computing in java programming2003BostonSpringer8110010.1007/978-1-4615-0377-4_5 LiangBGuoXSTuJZhangDChenJCAn acoustic rectifierNat Mater2010998999210.1038/nmat2881 HuXShenYLiuXFuRZiJSuperlensing effect in liquid surface wavesPhys Rev E20046903020110.1103/PhysRevE.69.030201 Zhang Y, Ye W (2018) Deep learning based inverse method for layout design. Structural and Multidisciplinary Optimization: 1-10 LohanDJDedeEMAllisonJTTopology optimization for heat conduction using generative design algorithmsStruct Multidiscip Optim201755310631077362080510.1007/s00158-016-1563-6 CangRLiHYaoHJiaoYRenYImproving direct physical properties prediction of heterogeneous materials from imaging data via convolutional neural network and a morphology-aware generative modelComput Mater Sci201815021222110.1016/j.commatsci.2018.03.074 Krizhevsky A, Hinton G (2010) Convolutional deep belief networks on cifar-10. Unpublished manuscript, 40(7) Yu Y, Hur T, Jung J, Jang IG (2019) Deep learning for determining a near-optimal topological design without any iteration. Struct Multidiscip Optim 59(3):787–799 ZhuRLiuXNHuGKSunCTHuangGLNegative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterialsNat Commun20145551010.1038/ncomms6510 Reed S, Akata Z, Yan X, Logeswaran L, Schiele B, Lee H (2016) Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396 Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 BendsøeMPSigmundOMaterial interpolation schemes in topology optimizationArch Appl Mech1999699-106356540957.7403710.1007/s004190050248 Goodfellow I et al. (2014) Generative adversarial nets. In Advances in neural information processing systems: 2672-2680 ZhouYZhangWZhuJXuZFeature-driven topology optimization method with signed distance functionComput Methods Appl Mech Eng201631013235485491439.7431510.1016/j.cma.2016.06.027 Guo T, Lohan DJ, Cang R, Ren MY, Allison JT (2018) An indirect design representation for topology optimization using variational autoencoder and style transfer. In: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 2018, p. 0804 Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X (2006) Ultrasonic metamaterials with negative modulus. Nat Mater 5(6) MP Bendsøe (2424_CR4) 1999; 69 2424_CR11 MA Bessa (2424_CR5) 2017; 320 SJ Osher (2424_CR35) 2001; 171 2424_CR14 2424_CR15 W Zhang (2424_CR50) 2017; 325 2424_CR51 S Krish (2424_CR16) 2011; 43 Y LeCun (2424_CR21) 1998; 86 2424_CR17 2424_CR18 GL Martin (2424_CR31) 1993; 5 Y Zhou (2424_CR52) 2016; 310 X Lei (2424_CR23) 2019; 86 2424_CR45 X Hu (2424_CR13) 2004; 69 2424_CR47 2424_CR48 2424_CR49 S Wang (2424_CR43) 2006; 65 DJ Lohan (2424_CR29) 2017; 55 MP Bendsøe (2424_CR3) 1989; 1 DL McDowell (2424_CR32) 2008 L Vaz (2424_CR40) 1995; 10 A Gupta (2424_CR12) 2015; 91 2424_CR33 BS Lazarov (2424_CR19) 2016; 86 2424_CR36 2424_CR37 MY Wang (2424_CR44) 2003; 192 SC Wang (2424_CR42) 2003 R Cang (2424_CR6) 2018; 150 X Guo (2424_CR10) 2014; 81 2424_CR30 2424_CR39 CH Villanueva (2424_CR41) 2017; 320 2424_CR20 2424_CR22 2424_CR24 2424_CR25 R Zhu (2424_CR53) 2014; 5 2424_CR2 P Nakshatrala (2424_CR34) 2015; 295 Z Yang (2424_CR46) 2010; 96 2424_CR8 2424_CR9 B Liang (2424_CR26) 2010; 9 2424_CR7 2424_CR28 2424_CR1 R Liu (2424_CR27) 2015; 4 J Rong (2424_CR38) 2019; 344 |
References_xml | – reference: LeiXLiuCDuZZhangWGuoXMachine learning-driven real-time topology optimization under moving morphable component-based frameworkJ Appl Mech201986101100410.1115/1.4041319 – reference: Li X, Zhang Y, Zhao H, Burkhart C, Brinson LC, Chen W (2018b) A transfer learning approach for microstructure reconstruction and structure-property predictions. Scientific reports, 8 – reference: WangSWangMYRadial basis functions and level set method for structural topology optimizationInt J Numer Methods Eng200665122060209022089401174.7433110.1002/nme.1536 – reference: BessaMABostanabadRLiuZHuAApleyDWBrinsonCLiuWKA framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionalityComput Methods Appl Mech Eng201732063366736463681439.7401410.1016/j.cma.2017.03.037 – reference: Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X (2006) Ultrasonic metamaterials with negative modulus. Nat Mater 5(6) – reference: Liu Q, Zhang N, Yang W, Wang S, Cui Z, Chen X, Chen L (2017) A review of image recognition with deep convolutional neural network. In International Conference on Intelligent Computing (pp. 69-80). Springer, Cham – reference: McDowellDLOlsonGBConcurrent design of hierarchical materials and structures. Scientific Modeling and Simulations2008DordrechtSpringer20724010.1007/978-1-4020-9741-6_14 – reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097-1105 – reference: MartinGLCentered-object integrated segmentation and recognition of overlapping handprinted charactersNeural Comput19935341942910.1162/neco.1993.5.3.419 – reference: LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, Jackel LD (1990) Handwritten digit recognition with a back-propagation network. In Advances in neural information processing systems, pp. 396-404 – reference: ZhouYZhangWZhuJXuZFeature-driven topology optimization method with signed distance functionComput Methods Appl Mech Eng201631013235485491439.7431510.1016/j.cma.2016.06.027 – reference: LiuRYabansuYCAgrawalAKalidindiSRChoudharyANMachine learning approaches for elastic localization linkages in high-contrast composite materialsIntegrating Materials and Manufacturing Innovation2015411310.1186/s40192-015-0042-z – reference: Li X, Yang Z, Brinson LC, Choudhary A, Agrawal A, Chen W (2018a) A deep adversarial learning methodology for designing microstructural material systems. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2018, Paper No. DETC2018-85633, pp. V02BT03A008. American Society of Mechanical Engineers – reference: CangRLiHYaoHJiaoYRenYImproving direct physical properties prediction of heterogeneous materials from imaging data via convolutional neural network and a morphology-aware generative modelComput Mater Sci201815021222110.1016/j.commatsci.2018.03.074 – reference: YangZDaiHMChanNHMaGCShengPAcoustic metamaterial panels for sound attenuation in the 50-1000 Hz regimeAppl Phys Lett20109604190610.1063/1.3299007 – reference: Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 – reference: Abdel-Hamid O, Mohamed AR, Jiang H, Penn G (2012) Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on (pp. 4277-4280). IEEE – reference: Goodfellow I et al. (2014) Generative adversarial nets. In Advances in neural information processing systems: 2672-2680 – reference: Zhang Y, Ye W (2018) Deep learning based inverse method for layout design. Structural and Multidisciplinary Optimization: 1-10 – reference: GuptaACecenAGoyalSSinghAKKalidindiSRStructure–property linkages using a data science approach: application to a non-metallic inclusion/steel composite systemActa Mater20159123925410.1016/j.actamat.2015.02.045 – reference: Reed S, Akata Z, Yan X, Logeswaran L, Schiele B, Lee H (2016) Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396 – reference: NakshatralaPTortorelliDTopology optimization for effective energy propagation in rate-independent elastoplastic material systemsComput Methods Appl Mech Eng201529530532633888361423.7475510.1016/j.cma.2015.05.004 – reference: WangMYWangXGuoDA level set method for structural topology optimizationComput Methods Appl Mech Eng20031921-222724619514081083.7457310.1016/S0045-7825(02)00559-5 – reference: LazarovBSWangFSigmundOLength scale and manufacturability in density-based topology optimizationArch Appl Mech2016861-218921810.1007/s00419-015-1106-4 – reference: Yu Y, Hur T, Jung J, Jang IG (2019) Deep learning for determining a near-optimal topological design without any iteration. Struct Multidiscip Optim 59(3):787–799 – reference: Krizhevsky A, Hinton G (2010) Convolutional deep belief networks on cifar-10. Unpublished manuscript, 40(7) – reference: Zhao J, Mathieu M, LeCun Y (2016) Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126 – reference: HuXShenYLiuXFuRZiJSuperlensing effect in liquid surface wavesPhys Rev E20046903020110.1103/PhysRevE.69.030201 – reference: BendsøeMPOptimal shape design as a material distribution problemStructural optimization19891419320210.1007/BF01650949 – reference: ZhuRLiuXNHuGKSunCTHuangGLNegative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterialsNat Commun20145551010.1038/ncomms6510 – reference: LiangBGuoXSTuJZhangDChenJCAn acoustic rectifierNat Mater2010998999210.1038/nmat2881 – reference: BendsøeMPSigmundOMaterial interpolation schemes in topology optimizationArch Appl Mech1999699-106356540957.7403710.1007/s004190050248 – reference: Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 – reference: OsherSJSantosaFLevel set methods for optimization problems involving geometry and constraints: I. frequencies of a two-density inhomogeneous drumJ Comput Phys2001171127228818436481056.7406110.1006/jcph.2001.6789 – reference: Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 – reference: GuoXZhangWZhongWDoing topology optimization explicitly and geometrically—a new moving morphable components based frameworkJ Appl Mech201481808100910.1115/1.4027609 – reference: VillanuevaCHMauteKCutFEM topology optimization of 3D laminar incompressible flow problemsComput Methods Appl Mech Eng201732044447336463611439.7429710.1016/j.cma.2017.03.007 – reference: ZhangWZhouYZhuJA comprehensive study of feature definitions with solids and voids for topology optimizationComput Methods Appl Mech Eng201732528931336934291439.7431010.1016/j.cma.2017.07.004 – reference: Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In International Conference on Machine Learning. pp. 214-223 – reference: LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc IEEE199886112278232410.1109/5.726791 – reference: Chen W, Jeyaseelan A, Fuge M (2018) Synthesizing designs with inter-part dependencies using hierarchical generative adversarial networks. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME, Quebec City, Canada – reference: Sosnovik I, Oseledets I (2017) Neural networks for topology optimization. arXiv preprint arXiv:1709.09578 – reference: Zeiler MD, Fergus R (2013) Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint arXiv:1301.3557 – reference: Mao X, Li Q, Xie H, Lau RY, Wang Z, Smolley SP (2017) Least squares generative adversarial networks. In Computer Vision (ICCV), 2017 IEEE International Conference on (pp. 2813-2821). IEEE – reference: Kodali N, Abernethy J, Hays J, Kira Z (2017) How to train your DRAGAN. arXiv preprint arXiv:1705.07215, 2(4) – reference: WangSCArtificial neural networkInterdisciplinary computing in java programming2003BostonSpringer8110010.1007/978-1-4615-0377-4_5 – reference: RongJYeWTopology optimization design scheme for broadband non-resonant hyperbolic elastic metamaterialsComput Methods Appl Mech Eng201934481983638800611440.7431010.1016/j.cma.2018.10.034 – reference: KrishSA practical generative design methodComput Aided Des20114318810010.1016/j.cad.2010.09.009 – reference: Yan F, Chan YC, Saboo A, Shah J, Olson GB, Chen W (2018) Data-driven prediction of mechanical properties in support of rapid certification of additively manufactured alloys. Comput Model Eng Sci:343–366 – reference: VazLHintonEFE-shape sensitivity of elastoplastic responseStruct Multidiscip Optim199510323123810.1007/BF01742597 – reference: Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Shi W (2017) Photo-realistic single image super-resolution using a generative adversarial network. In CVPR Vol. 2, No. 3, p. 4 – reference: LohanDJDedeEMAllisonJTTopology optimization for heat conduction using generative design algorithmsStruct Multidiscip Optim201755310631077362080510.1007/s00158-016-1563-6 – reference: Guo T, Lohan DJ, Cang R, Ren MY, Allison JT (2018) An indirect design representation for topology optimization using variational autoencoder and style transfer. In: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 2018, p. 0804 – volume: 43 start-page: 88 issue: 1 year: 2011 ident: 2424_CR16 publication-title: Comput Aided Des doi: 10.1016/j.cad.2010.09.009 – ident: 2424_CR9 – volume: 5 start-page: 419 issue: 3 year: 1993 ident: 2424_CR31 publication-title: Neural Comput doi: 10.1162/neco.1993.5.3.419 – volume: 344 start-page: 819 year: 2019 ident: 2424_CR38 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.10.034 – ident: 2424_CR28 doi: 10.1007/978-3-319-63309-1_7 – volume: 5 start-page: 5510 year: 2014 ident: 2424_CR53 publication-title: Nat Commun doi: 10.1038/ncomms6510 – ident: 2424_CR1 doi: 10.1109/ICASSP.2012.6288864 – volume: 325 start-page: 289 year: 2017 ident: 2424_CR50 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2017.07.004 – ident: 2424_CR39 – ident: 2424_CR45 doi: 10.31614/cmes.2018.04452 – ident: 2424_CR7 doi: 10.1115/DETC2018-85339 – volume: 55 start-page: 1063 issue: 3 year: 2017 ident: 2424_CR29 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-016-1563-6 – ident: 2424_CR2 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 2424_CR21 publication-title: Proc IEEE doi: 10.1109/5.726791 – volume: 69 start-page: 030201 year: 2004 ident: 2424_CR13 publication-title: Phys Rev E doi: 10.1103/PhysRevE.69.030201 – volume: 150 start-page: 212 year: 2018 ident: 2424_CR6 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2018.03.074 – ident: 2424_CR51 – ident: 2424_CR49 – ident: 2424_CR24 – ident: 2424_CR8 doi: 10.1038/nmat1644 – volume: 4 start-page: 13 issue: 1 year: 2015 ident: 2424_CR27 publication-title: Integrating Materials and Manufacturing Innovation doi: 10.1186/s40192-015-0042-z – ident: 2424_CR47 doi: 10.1007/s00158-018-2101-5 – ident: 2424_CR17 – volume: 81 start-page: 081009 issue: 8 year: 2014 ident: 2424_CR10 publication-title: J Appl Mech doi: 10.1115/1.4027609 – ident: 2424_CR48 – volume: 1 start-page: 193 issue: 4 year: 1989 ident: 2424_CR3 publication-title: Structural optimization doi: 10.1007/BF01650949 – ident: 2424_CR33 – volume: 310 start-page: 1 year: 2016 ident: 2424_CR52 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2016.06.027 – volume: 91 start-page: 239 year: 2015 ident: 2424_CR12 publication-title: Acta Mater doi: 10.1016/j.actamat.2015.02.045 – volume: 86 start-page: 011004 issue: 1 year: 2019 ident: 2424_CR23 publication-title: J Appl Mech doi: 10.1115/1.4041319 – ident: 2424_CR25 doi: 10.1038/s41598-018-31571-7 – volume: 96 start-page: 041906 year: 2010 ident: 2424_CR46 publication-title: Appl Phys Lett doi: 10.1063/1.3299007 – ident: 2424_CR18 – ident: 2424_CR20 – ident: 2424_CR22 doi: 10.1109/CVPR.2017.19 – ident: 2424_CR30 doi: 10.1109/ICCV.2017.304 – ident: 2424_CR37 – ident: 2424_CR14 – start-page: 207 volume-title: Concurrent design of hierarchical materials and structures. Scientific Modeling and Simulations year: 2008 ident: 2424_CR32 doi: 10.1007/978-1-4020-9741-6_14 – volume: 192 start-page: 227 issue: 1-2 year: 2003 ident: 2424_CR44 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(02)00559-5 – volume: 171 start-page: 272 issue: 1 year: 2001 ident: 2424_CR35 publication-title: J Comput Phys doi: 10.1006/jcph.2001.6789 – volume: 65 start-page: 2060 issue: 12 year: 2006 ident: 2424_CR43 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1536 – volume: 295 start-page: 305 year: 2015 ident: 2424_CR34 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2015.05.004 – volume: 10 start-page: 231 issue: 3 year: 1995 ident: 2424_CR40 publication-title: Struct Multidiscip Optim doi: 10.1007/BF01742597 – start-page: 81 volume-title: Interdisciplinary computing in java programming year: 2003 ident: 2424_CR42 doi: 10.1007/978-1-4615-0377-4_5 – ident: 2424_CR15 – volume: 69 start-page: 635 issue: 9-10 year: 1999 ident: 2424_CR4 publication-title: Arch Appl Mech doi: 10.1007/s004190050248 – volume: 320 start-page: 633 year: 2017 ident: 2424_CR5 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2017.03.037 – volume: 9 start-page: 989 year: 2010 ident: 2424_CR26 publication-title: Nat Mater doi: 10.1038/nmat2881 – ident: 2424_CR36 – ident: 2424_CR11 doi: 10.2514/6.2018-0804 – volume: 320 start-page: 444 year: 2017 ident: 2424_CR41 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2017.03.007 – volume: 86 start-page: 189 issue: 1-2 year: 2016 ident: 2424_CR19 publication-title: Arch Appl Mech doi: 10.1007/s00419-015-1106-4 |
SSID | ssj0008049 |
Score | 2.5516536 |
Snippet | Due to their designable properties, microstructural materials have emerged as an important class of materials that have the potential for used in a variety of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1417 |
SubjectTerms | Artificial neural networks Computational Mathematics and Numerical Analysis Computer simulation Deep learning Engineering Engineering Design Inverse design Machine learning Microstructure Optimization Optimization techniques Research Paper Tensors Theoretical and Applied Mechanics |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTsMwELWg3cAC8RWFgrxgBxaN49jOChVEVVWiQohK3UX-soG2qD0Ad-CGnARP4rSARNeZePHGmXmxZ-YhdMFSY53PBFE6k4SlNCHKa0q4Cuk-dzIXBpqTH4a8P2KDcTaOB27zWFZZx8QyUNupgTPyawo3WCFZZvJm9k5ANQpuV6OExiZqhhAsZQM1b--Hj0_LWCwrAgy0hiRMjGPbTNk8B3QBCrlyAnmKEfo7Na345p8r0jLz9HbRTqSMuFv5eA9tuMk-2v4xSPAADbrYOjfDUQPi5evjE9KTxZVANA7MFAemF4ygXgNPPX6DQrxqeCwM3sCBuFZ78RCNevfPd30SVRKICZAsAj2WXjvBvTaK61QxIV3gbFYbKlWHeq9cwr00Wep8LhNhwDKzuTTMCCN8eoQak-nEHSOsAh-0LuUdKwyjmoKNzlzOM2qFk7yFkhqgwsQR4qBk8Voshx-XoBYB1KIEtaAtdLl8Z1YN0Fhr3a5xL-LHNC9Wrm-hq9oXq8f_r3ayfrVTtEXh77msw2mjRsDcnQWKsdDncR99A4UPzh8 priority: 102 providerName: ProQuest |
Title | A deep learning–based method for the design of microstructural materials |
URI | https://link.springer.com/article/10.1007/s00158-019-02424-2 https://www.proquest.com/docview/2385884658 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TgMxELUgaaBAnCIQIhd0YCnr9bXlgnIoiAghIoVq5ZMGkkjJB_AP_CFfgr1XAAES1RY762LsnfeseTMDwDmJtbGOciQVFYjEOELSKYyY9HCfWJFwHYqTb8dsOCGjKZ2WRWHLSu1epSTzSF0XuwV4D8KrBAVcIcgH3ib1d_cg5JrgtI6_oiC9gcqgiPBpWSrz8xpf4WjNMb-lRXO06e-CnZImwrTY1z2wYWf7YPtT88ADMEqhsXYBy7kPT--vbwGSDCyGQkPPRqFnd94oaDTg3MGXIL4rGsaGZhvQk9Xi_B2CSb_3cD1E5WQEpGNBV54SC6csZ05pyVQsCRfW8zSjNBayi52TNmJOaBpbl4iI62BJTSI00VxzFx-Bxmw-s8cASs8BjY1Z13BNsMLBRlGbMIoNt4K1QFQ5KNNl2_AwveI5qxse507NvFOz3KkZboGL-ptF0TTjT-t25fes_IGWGQ4JS8-NqGiBy2ov1q9_X-3kf-anYAuHG3SuxWmDht8De-Zpxkp1wKboDzqgmQ4eb3r-edUb39138rP2AXwVzYw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JThtBEC055pBwQJBFcTChD8kpaYXp6enuOSBkEYxZTyD5NpneuATbEUhRbvwD_8FH8SVUzWInkeDGeWrq8Lqm3-vpWgA-ydT5EDPNS5sZLlOR8DJawVWJdJ8Hk2tHxcknp2p0Lg_H2bgDd20tDKVVtntitVH7qaN_5N8E3WAhWWZmZ_aL09Qoul1tR2jUYXEU_vzGI9vV9sF3XN_PQgz3znZHvJkqwB26uEY5aaINWkXrSmXTUmoTUON464Qpt0SMZUhUNC5LQ8xNoh1ZZj43TjrtdEzR7wtYkikyOVWmD_fnO7-p5TaJKJ5IPW6KdKpSPRInlDaWc2JFycW_RLhQt_9dyFY8N1yFlUagskEdUWvQCZPXsPxX28I3cDhgPoQZayZOXNzf3BIZelaPo2aogxnqSjSi7BA2jeyS0v7qVrXU5oOhTK4j_y2cPwt676A7mU7Ce2Alqk8fUrXltZPCCrKxWchVJrwORvUgaQEqXNOwnOZm_CzmrZYrUAsEtahALUQPvszfmdXtOp607re4F82ne1UsAq0HX9u1WDx-3NuHp71twsvR2clxcXxwerQOrwSd26sMoD50Ef-wgeLm2n6sIorBj-cO4QeihQxQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TgMxELVQkBAUiFMEArigAytZr68tIyAKASIKIqWzfNLAJhL5AP6BP-RLsPdIAgIk6p11MTPreauZ9waAM5Ia6zzlSGkqEElxgpTXGDEVyn3mRMZNJCffD1l_RAZjOl5i8RfT7nVLsuQ0RJWmfNaeWt-eE99iqY9DWBmKNYagcAmvksgGDhk9wt35XSxKABxhDUoIH1e0mZ_P-FqaFnjzW4u0qDy9LbBZQUbYLWO8DVZcvgM2loQEd8GgC61zU1jtgHj6eHuP5cnCckE0DMgUBqQXjOK8Bpx4-BIH8Urx2Ci8AQNwLXNxD4x614-XfVRtSUAmFXQW4LHw2nHmtVFMp4pw4QJms9pgoTrYe-US5oWhqfOZSLiJltRmwhDDDffpPmjkk9wdAKgCHrQuZR3LDcEaRxtNXcYottwJ1gRJ7SBpKgnxuMniWc7FjwunyuBUWThV4iY4n78zLQU0_rRu1X6X1cf0KnFsXgacREUTXNSxWDz-_bTD_5mfgrWHq568uxneHoF1HH-sixGdFmiEcLjjgD5m-qRIsE-YANCe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning%E2%80%93based+method+for+the+design+of+microstructural+materials&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Tan%2C+Ren+Kai&rft.au=Zhang%2C+Nevin+L.&rft.au=Ye%2C+Wenjing&rft.date=2020-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=61&rft.issue=4&rft.spage=1417&rft.epage=1438&rft_id=info:doi/10.1007%2Fs00158-019-02424-2&rft.externalDocID=10_1007_s00158_019_02424_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon |