A deep learning–based method for the design of microstructural materials
Due to their designable properties, microstructural materials have emerged as an important class of materials that have the potential for used in a variety of applications. The design of such materials is challenged by the multifunctionality requirements and various constraints stemmed from manufact...
Saved in:
Published in | Structural and multidisciplinary optimization Vol. 61; no. 4; pp. 1417 - 1438 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Due to their designable properties, microstructural materials have emerged as an important class of materials that have the potential for used in a variety of applications. The design of such materials is challenged by the multifunctionality requirements and various constraints stemmed from manufacturing limitations and other practical considerations. Traditional design methods such as those based on topological optimization techniques rely heavily on high-dimensional physical simulations and can be inefficient. In addition, it is difficult to impose geometrical constraints in those methods. In this work, we propose a deep learning model based on deep convolutional generative adversarial network (DCGAN) and convolutional neural network (CNN) for the design of microstructural materials. The DCGAN is used to generate design candidates that satisfy geometrical constraints and the CNN is used as a surrogate model to link the microstructure to its properties. Once trained, the two networks are combined to form the design network which is utilized to for the inverse design. The advantages of the method include its high efficiency and the simplicity in handling geometrical constraints. In addition, no high-dimensional sensitivity simulations are required. The performance of the method is demonstrated on the design of microstructural materials with desired compliance tensor, subject to specified geometrical constraints. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1615-147X 1615-1488 |
DOI: | 10.1007/s00158-019-02424-2 |