Stochastic Graphon Games: II. The Linear-Quadratic Case
In this paper, we analyze linear-quadratic stochastic differential games with a continuum of players interacting through graphon aggregates, each state being subject to idiosyncratic Brownian shocks. The major technical issue is the joint measurability of the player state trajectories with respect t...
Saved in:
Published in | Applied mathematics & optimization Vol. 85; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we analyze linear-quadratic stochastic differential games with a continuum of players interacting through graphon aggregates, each state being subject to idiosyncratic Brownian shocks. The major technical issue is the joint measurability of the player state trajectories with respect to samples and player labels, which is required to compute for example costs involving the graphon aggregate. To resolve this issue we set the game in a Fubini extension of a product probability space. We provide conditions under which the graphon aggregates are deterministic and the linear state equation is uniquely solvable for all players in the continuum. The Pontryagin maximum principle yields equilibrium conditions for the graphon game in the form of a forward-backward stochastic differential equation, for which we establish existence and uniqueness. We then study how graphon games approximate games with finitely many players over graphs with random weights. We illustrate some of the results with a numerical example. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0095-4616 1432-0606 |
DOI: | 10.1007/s00245-022-09839-2 |