Beyond the Sparsity-Based Target Detector: A Hybrid Sparsity and Statistics-Based Detector for Hyperspectral Images

Hyperspectral images provide great potential for target detection, however, new challenges are also introduced for hyperspectral target detection, resulting that hyperspectral target detection should be treated as a new problem and modeled differently. Many classical detectors are proposed based on...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 25; no. 11; pp. 5345 - 5357
Main Authors Du, Bo, Zhang, Yuxiang, Zhang, Liangpei, Tao, Dacheng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hyperspectral images provide great potential for target detection, however, new challenges are also introduced for hyperspectral target detection, resulting that hyperspectral target detection should be treated as a new problem and modeled differently. Many classical detectors are proposed based on the linear mixing model and the sparsity model. However, the former type of model cannot deal well with spectral variability in limited endmembers, and the latter type of model usually treats the target detection as a simple classification problem and pays less attention to the low target probability. In this case, can we find an efficient way to utilize both the high-dimension features behind hyperspectral images and the limited target information to extract small targets? This paper proposes a novel sparsity-based detector named the hybrid sparsity and statistics detector (HSSD) for target detection in hyperspectral imagery, which can effectively deal with the above two problems. The proposed algorithm designs a hypothesis-specific dictionary based on the prior hypotheses for the test pixel, which can avoid the imbalanced number of training samples for a class-specific dictionary. Then, a purification process is employed for the background training samples in order to construct an effective competition between the two hypotheses. Next, a sparse representation-based binary hypothesis model merged with additive Gaussian noise is proposed to represent the image. Finally, a generalized likelihood ratio test is performed to obtain a more robust detection decision than the reconstruction residual-based detection methods. Extensive experimental results with three hyperspectral data sets confirm that the proposed HSSD algorithm clearly outperforms the state-of-the-art target detectors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2016.2601268