Fear memory-induced alterations in the mRNA expression of G proteins in the mouse brain and the impact of immediate posttraining treatment with morphine
Disturbances in fear-evoked signal transduction in the hippocampus (HP), the nuclei of the amygdala (AMY), and the prefrontal cortex (PFC) underlie anxiety-related disorders. However, the molecular mechanisms underlying these effects remain elusive. Heterotrimeric G proteins (GPs) are divided into t...
Saved in:
Published in | Progress in neuro-psychopharmacology & biological psychiatry Vol. 93; pp. 221 - 231 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
13.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Disturbances in fear-evoked signal transduction in the hippocampus (HP), the nuclei of the amygdala (AMY), and the prefrontal cortex (PFC) underlie anxiety-related disorders. However, the molecular mechanisms underlying these effects remain elusive. Heterotrimeric G proteins (GPs) are divided into the following four families based on the intracellular activity of their alpha subunit (Gα): Gα(s) proteins stimulate cyclic AMP (cAMP) generation, Gα(i/o) proteins inhibit the cAMP pathway, Gα(q/11) proteins increase the intracellular Ca++ concentration and the inositol trisphosphate level, and Gα(12/13) proteins activate monomeric GP-Rho. In the present study, we assessed the effects of a fear memory procedure on the mRNA expression of the Gα subunits of all four GP families in the HP, AMY and PFC. C57BL/6 J mice were subjected to a fear conditioning (FC) procedure followed by a contextual or cued fear memory test (CTX-R and CS-R, respectively). Morphine (MOR, 1 mg/kg/ip) was injected immediately after FC to prevent the fear consolidation process. Real-time quantitative PCR was used to measure the mRNA expression levels of Gα subunits at 1 h after FC, 24 h after FC, and 1 h after the CTX-R or CS-R. In the HP, the mRNA levels of Gα(s), Gα(12) and Gα(11) were higher at 1 h after training. Gα(s) levels were slightly lower when consolidation was stabilized and after the CS-R. The mRNA levels of Gα(12) were increased at 1 h after FC, returned to control levels at 24 h after FC and increased again with the CTX-R. The increase in the Gα(11) level persisted at 24 h after FC and after CTX-R. In the AMY, no specific changes were induced by FC. In the PFC, CTX-R was accompanied by a decrease in Gα(i/o) mRNA levels; however, only Gα(i2) downregulation was prevented by MOR treatment. Hence, the FC-evoked changes in Gα mRNA expression were observed mainly in the HP and connected primarily to contextual learning. These results suggest that the activation of signaling pathways by Gα(s) and Gα(12) is required to begin the fear memory consolidation process in the HP, while signal transduction via Gα(11) is implicated in the maintenance of fear consolidation. In the PFC, the downregulation of Gα(i2) appears to be related to the contextual learning of fear.
•Impact of fear learning on Gα subunits of G proteins was investigated.•Contextual learning-evoked changes in select Gα subunits are observable in the hippocampus.•Early morphine application prevents fear-evoked alterations in Gα subunit mRNA expression. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0278-5846 1878-4216 |
DOI: | 10.1016/j.pnpbp.2019.04.001 |