7‑MEGA™ 500 regulates the expression of COX‑2, MMP‑3 and type 1 procollagen in UVB‑irradiated human keratinocytes and dermal fibroblasts

AlaskOmega® Omega 7 500, also known as Omega‑7 fatty acid or 7‑MEGA™, is a highly concentrated palmitoleic acid (C16:1). Little is known about how 7‑MEGA regulates skin inflammation and wrinkle formation in cultured skin cells. The present study aimed to investigate the effects of 7‑MEGA on the expr...

Full description

Saved in:
Bibliographic Details
Published inMolecular medicine reports Vol. 21; no. 3; pp. 1346 - 1355
Main Authors Park, Yu-Kyoung, Yadav, Anil Kumar, Roshanzadeh, Amir, Ryoo, Young-Wook, Kim, Bae-Hwan, Cha, Ji Yun, Son, Yeon Kyung, Lee, Na Young, Jang, Byeong-Churl
Format Journal Article
LanguageEnglish
Published Greece Spandidos Publications 01.03.2020
Spandidos Publications UK Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:AlaskOmega® Omega 7 500, also known as Omega‑7 fatty acid or 7‑MEGA™, is a highly concentrated palmitoleic acid (C16:1). Little is known about how 7‑MEGA regulates skin inflammation and wrinkle formation in cultured skin cells. The present study aimed to investigate the effects of 7‑MEGA on the expression of cyclooxygenase‑2 (COX‑2), matrix metallopeptidase (MMP)‑1/3 and type 1 procollagen, which are markers of skin inflammation and wrinkle formation, in ultraviolet B (UVB)‑irradiated human dermal fibroblasts (HDFs) and keratinocytes (HaCaT). No toxicity was observed upon treatment of HDFs and HaCaT cells with 0.5‑2.5 µl/ml 7‑MEGA. The exposure of HaCaT cells to 10 mJ/cm2 UVB for 6 h resulted in increased protein and/or mRNA expression of COX‑2 and MMP‑3. Treatment of HaCaT cells with 2.5 µl/ml 7‑MEGA suppressed the UVB‑induced expression of COX‑2 and MMP‑3 in these cells. In addition, treatment with 2.5 µl/ml 7‑MEGA attenuated the UVB‑induced expression and phosphorylation levels of c‑Fos and c‑Jun, two components of the activator protein‑1 (AP‑1) transcription factor, in HaCaT cells. Exposure of HDFs to 60 mJ/cm2 UVB for 6 h significantly decreased the expression of type 1 procollagen protein, whereas treatment with 2.5 µl/ml 7‑MEGA partially reversed the effects of UVB on the expression of type 1 procollagen protein. These results demonstrated for the first time that 7‑MEGA regulated the expression of COX‑2, MMP‑3 and type 1 procollagen in UVB‑irradiated skin cells. The present study suggested that 7‑MEGA may serve as a novel agent against UVB‑induced skin inflammation and damage.
ISSN:1791-2997
1791-3004
DOI:10.3892/mmr.2019.10899