Multi-input CNN-GRU based human activity recognition using wearable sensors
Human Activity Recognition (HAR) has attracted much attention from researchers in the recent past. The intensification of research into HAR lies in the motive to understand human behaviour and inherently anticipate human intentions. Human activity data obtained via wearable sensors like gyroscope an...
Saved in:
Published in | Computing Vol. 103; no. 7; pp. 1461 - 1478 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.07.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Human Activity Recognition (HAR) has attracted much attention from researchers in the recent past. The intensification of research into HAR lies in the motive to understand human behaviour and inherently anticipate human intentions. Human activity data obtained via wearable sensors like gyroscope and accelerometer is in the form of time series data, as each reading has a timestamp associated with it. For HAR, it is important to extract the relevant temporal features from raw sensor data. Most of the approaches for HAR involves a good amount of feature engineering and data pre-processing, which in turn requires domain expertise. Such approaches are time-consuming and are application-specific. In this work, a Deep Neural Network based model, which uses Convolutional Neural Network, and Gated Recurrent Unit is proposed as an end-to-end model performing automatic feature extraction and classification of the activities as well. The experiments in this work were carried out using the raw data obtained from wearable sensors with nominal pre-processing and don’t involve any handcrafted feature extraction techniques. The accuracies obtained on UCI-HAR, WISDM, and PAMAP2 datasets are 96.20%, 97.21%, and 95.27% respectively. The results of the experiments establish that the proposed model achieved superior classification performance than other similar architectures. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0010-485X 1436-5057 |
DOI: | 10.1007/s00607-021-00928-8 |