Ca2+ refilling of the endoplasmic reticulum is largely preserved albeit reduced Ca2+ entry in endothelial cells

Abstract In this study the relationship between the efficiency of endoplasmic reticulum (ER) Ca2+ refilling and the extent of Ca2+ entry was investigated in endothelial cells. ER and mitochondrial Ca2+ concentration were measured using genetically encoded Ca2+ sensors, while the amount of entering C...

Full description

Saved in:
Bibliographic Details
Published inCell calcium (Edinburgh) Vol. 41; no. 1; pp. 63 - 76
Main Authors Malli, R, Frieden, M, Hunkova, M, Trenker, M, Graier, W.F
Format Journal Article
LanguageEnglish
Published Netherlands 01.01.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract In this study the relationship between the efficiency of endoplasmic reticulum (ER) Ca2+ refilling and the extent of Ca2+ entry was investigated in endothelial cells. ER and mitochondrial Ca2+ concentration were measured using genetically encoded Ca2+ sensors, while the amount of entering Ca2+ was controlled by varying either the extracellular Ca2+ or the electrical driving force for Ca2+ by changing the plasma membrane potential. In the absence of an agonist, ER Ca2+ replenishment was fully accomplished even if the Ca2+ concentration applied was reduced from 2 to 0.5 mM. A similar strong efficiency of ER Ca2+ refilling was obtained under condition of plasma membrane depolarization. However, in the presence of histamine, ER Ca2+ refilling depended on mitochondrial Ca2+ transport and was more susceptible to membrane depolarization. Store-operated Ca2+ entry (SOCE), was strongly reduced under low Ca2+ and depolarizing conditions but increased if ER Ca2+ uptake was blocked or if ER Ca2+ was released continuously by IP3 . A correlation of the kinetics of ER Ca2+ refilling with cytosolic Ca2+ signals revealed that termination of SOCE is a rapid event that is not delayed compared to ER refilling. Our data indicate that ER refilling occurs in priority to, and independently from the cytosolic Ca2+ elevation upon Ca2+ entry and that this important process is widely achieved even under conditions of diminished Ca2+ entry.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0143-4160
1532-1991
DOI:10.1016/j.ceca.2006.05.001