Unusual formation of small aggregates by mixing giant multilamellar vesicles

The phase behavior and structure of aggregates in a hydrophobic block copolymer (L121)/double-tailed surfactant (AOT)/water system have been studied by phase study, fluorescence spectrometry, dynamic light scattering, transmission electron microscopy, small angle X-ray scattering (SAXS) and conducti...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 312; no. 1; pp. 108 - 113
Main Authors Rodríguez-Abreu, Carlos, Shrestha, Lok Kumar, López Quintela, Manuel Arturo
Format Journal Article
LanguageEnglish
Published San Diego, CA Elsevier Inc 01.08.2007
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The phase behavior and structure of aggregates in a hydrophobic block copolymer (L121)/double-tailed surfactant (AOT)/water system have been studied by phase study, fluorescence spectrometry, dynamic light scattering, transmission electron microscopy, small angle X-ray scattering (SAXS) and conductivity measurements. An isotropic, one-phase region is found between two biphasic regions containing large vesicles, namely, transparent samples are formed by mixing two turbid solutions. Depending on the AOT/L121 ratio, the isotropic region can be quite stable against temperature. The phase transition between the two regions can be detected by the used techniques, and structural transitions in the aggregates are inferred. The experimental evidence indicates that mixed aggregates are formed at very low concentrations, much lower than the critical micellar concentration of AOT. These micelle-like aggregates contain a mixed hydrophobic core, are small (2–4 nm), and seem to be quasi-spherical, which is an unexpected result since the packing parameters of the single amphiphiles do not favor such small quasi-spherical shapes. This behavior might have interesting implications in the release of substances from vesicles when their structure is disrupted.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2006.07.042