Mouse Retinal Progenitor Cell Dynamics on Electrospun Poly (ϵ-Caprolactone)
Age-related macular degeneration, retinitis pigmentosa and glaucoma are among the many retinal degenerative diseases where retinal cell death leads to irreversible vision loss and blindness. Working toward a cell-replacement-based therapy for such diseases, a number of research groups have recently...
Saved in:
Published in | Journal of biomaterials science. Polymer ed. Vol. 23; no. 11; pp. 1451 - 1465 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Routledge
01.01.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Age-related macular degeneration, retinitis pigmentosa and glaucoma are among the many retinal degenerative diseases where retinal cell death leads to irreversible vision loss and blindness. Working toward a cell-replacement-based therapy for such diseases, a number of research groups have recently evaluated the feasibility of using retinal progenitor cells (RPCs) cultured and transplanted on biodegradable polymer substrates to replace damaged retinal tissue. Appropriate polymer substrate design is essential to providing a three-dimensional environment that can facilitate cell adhesion, proliferation and post-transplantation migration into the host environment. In this study, we have designed and fabricated a novel, ultra-thin electrospun poly(ϵ-caprolactone) (PCL) scaffold with microscale fiber diameters, appropriate porosity for infiltration by RPCs, and biologically compatible mechanical characteristics. We have verified that our electrospun PCL scaffold supports robust mouse RPC proliferation, adhesion, and differentiation in vitro, as well as migration into mouse retinal explants. These promising results make PCL a strong candidate for further development as a cell transplantation substrate in retinal regenerative research. |
---|---|
AbstractList | Age-related macular degeneration, retinitis pigmentosa and glaucoma are among the many retinal degenerative diseases where retinal cell death leads to irreversible vision loss and blindness. Working toward a cell-replacement-based therapy for such diseases, a number of research groups have recently evaluated the feasibility of using retinal progenitor cells (RPCs) cultured and transplanted on biodegradable polymer substrates to replace damaged retinal tissue. Appropriate polymer substrate design is essential to providing a three-dimensional environment that can facilitate cell adhesion, proliferation and post-transplantation migration into the host environment. In this study, we have designed and fabricated a novel, ultra-thin electrospun poly(Im-caprolactone) (PCL) scaffold with microscale fiber diameters, appropriate porosity for infiltration by RPCs, and biologically compatible mechanical characteristics. We have verified that our electrospun PCL scaffold supports robust mouse RPC proliferation, adhesion, and differentiation in vitro, as well as migration into mouse retinal explants. These promising results make PCL a strong candidate for further development as a cell transplantation substrate in retinal regenerative research. Age-related macular degeneration, retinitis pigmentosa and glaucoma are among the many retinal degenerative diseases where retinal cell death leads to irreversible vision loss and blindness. Working toward a cell-replacement-based therapy for such diseases, a number of research groups have recently evaluated the feasibility of using retinal progenitor cells (RPCs) cultured and transplanted on biodegradable polymer substrates to replace damaged retinal tissue. Appropriate polymer substrate design is essential to providing a three-dimensional environment that can facilitate cell adhesion, proliferation and post-transplantation migration into the host environment. In this study, we have designed and fabricated a novel, ultra-thin electrospun poly(ϵ-caprolactone) (PCL) scaffold with microscale fiber diameters, appropriate porosity for infiltration by RPCs, and biologically compatible mechanical characteristics. We have verified that our electrospun PCL scaffold supports robust mouse RPC proliferation, adhesion, and differentiation in vitro, as well as migration into mouse retinal explants. These promising results make PCL a strong candidate for further development as a cell transplantation substrate in retinal regenerative research. |
Author | Cai, Sophie Wnek, Gary Edmund Young, Michael Joseph Smith, Meghan Elisabeth Redenti, Stephen Michael |
Author_xml | – sequence: 1 givenname: Sophie surname: Cai fullname: Cai, Sophie organization: Department of Ophthalmology , Schepens Eye Research Institute, Harvard Medical School – sequence: 2 givenname: Meghan Elisabeth surname: Smith fullname: Smith, Meghan Elisabeth organization: Department of Chemical Engineering , Case Western Reserve University – sequence: 3 givenname: Stephen Michael surname: Redenti fullname: Redenti, Stephen Michael organization: Department of Biological Sciences , City University of New York, Lehman College – sequence: 4 givenname: Gary Edmund surname: Wnek fullname: Wnek, Gary Edmund organization: Department of Macromolecular Science and Engineering , Case Western Reserve University – sequence: 5 givenname: Michael Joseph surname: Young fullname: Young, Michael Joseph organization: Department of Ophthalmology , Schepens Eye Research Institute, Harvard Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21781383$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kM1OHDEQhC0EguXnzimaIzkMcY_HHo84RRt-Ii0KikDiZvV6PJGRx97YXqF9sDxHXgmjhQtScupD1dddXYdk1wdvCDkFeg4g2BfaN5RTAfDIZcuk3CEz4ELWXDTtLpm9ynXR2QE5TOmJUgoU2D45aKCTwCSbkcVtWCdT_TTZenTVXQy_jLc5xGpunKu-bTxOVqcq-OrSGZ1jSKu1r-6C21Rnf__Uc1zF4FDnEuzzMdkb0SVz8jaPyMPV5f38pl78uP4-_7qoNZNtrkc9NB0AdIiN1HLgDPtedAJQGj7ytmUDa-mIbNnCyPum75c9FZo2EsRSU82OyNl2b7n9e21SVpNNuuRFb8o7CjilHe9kJ4v105t1vZzMoFbRThg36r2BYhBbgy6vpWhGpW3GbIPPEa1TQNVr1epj1QWkH8D33f9BLraI9WOIEz6H6AaVceNCHCN6bZNi_6RfAFi9kOc |
CitedBy_id | crossref_primary_10_1007_s10853_014_8707_0 crossref_primary_10_1016_j_actbio_2019_04_057 crossref_primary_10_1016_j_mtcomm_2022_103461 crossref_primary_10_1080_14712598_2017_1346079 crossref_primary_10_1016_j_actbio_2017_03_039 crossref_primary_10_1016_j_biomaterials_2014_08_040 crossref_primary_10_1016_j_mcn_2016_07_006 crossref_primary_10_3390_mi12111312 crossref_primary_10_1007_s10856_013_4911_8 crossref_primary_10_1016_j_bej_2020_107846 crossref_primary_10_3390_bioengineering12030278 |
Cites_doi | 10.1006/bbrc.2000.2153 10.1016/j.biomaterials.2009.09.015 10.1073/pnas.93.2.589 10.1038/nprot.2009.51 10.1196/annals.1334.012 10.1172/JCI42951 10.1039/b618583e 10.1007/PL00000686 10.1016/j.biomaterials.2010.07.026 10.1097/00006982-200412000-00021 10.1088/1468-6996/11/1/014108 10.1016/j.neulet.2009.04.035 10.1073/pnas.96.2.736 10.1163/156856205774576655 10.1016/j.biomaterials.2004.01.066 10.1016/j.biomaterials.2008.01.011 10.1016/j.biomaterials.2009.11.074 10.1016/j.biomaterials.2007.10.007 10.1016/j.stem.2008.10.015 10.1634/stemcells.2005-0111 10.2174/1874364101004010030 10.1016/j.biomaterials.2004.08.022 10.1038/sj.eye.6702842 10.1203/01.pdr.0000305937.26105.e7 10.1038/nature05161 10.1163/092050610X487738 10.2217/rme.09.59 10.1002/term.313 10.1089/ten.2006.12.1197 10.1167/iovs.08-3067 10.1016/j.nano.2006.01.002 10.1007/s12177-008-9005-3 10.1016/j.actbio.2006.02.005 10.1016/j.biotechadv.2010.01.004 10.1038/nbt1384 10.1016/j.addr.2007.04.021 10.3129/i10-070 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2012 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 |
DOI | 10.1163/092050611X584388 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1568-5624 |
EndPage | 1465 |
ExternalDocumentID | 21781383 10_1163_092050611X584388 688391 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .QJ 0BK 0R~ 0VX 29J 30N 36B 4.4 53G 5GY AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ACUHS ADCVX ADGTB AEOZL AEPSL AEVUW AEYOC AGDLA AGMYJ AHMBA AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMFWP AQRUH AVBZW AWYRJ BLEHA CCCUG COF CS3 DGEBU DKSSO EAP EBC EBD EBS EJD EMB EMK EMOBN EPL EST ESX E~A E~B F5P GCUZY GTTXZ H13 HZ~ H~P I-F IL9 IPNFZ J.P KYCEM M4Z ML0 ML~ NZ- O9- PQQKQ RIG RNANH RNS ROSJB RTWRZ S-T SNACF SV3 TBQAZ TDBHL TEX TFL TFT TFW TTHFI TUROJ TUS UT5 ZGOLN ~02 ~S~ AAGDL AAHIA AAYXX ADMLS ADYSH AFRVT AMPGV CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 ROL |
ID | FETCH-LOGICAL-c384t-fcd271117aa28c8d53a996761a8e5f5443d340fa3b41f59299b906c02816bc0c3 |
ISSN | 0920-5063 |
IngestDate | Thu Jul 10 23:55:01 EDT 2025 Thu Jan 02 22:09:07 EST 2025 Tue Jul 01 01:05:00 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Wed Dec 25 09:07:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | biocompatibility electrospinning retina scaffold polycaprolactone Progenitor cell |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-fcd271117aa28c8d53a996761a8e5f5443d340fa3b41f59299b906c02816bc0c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21781383 |
PQID | 1500757878 |
PQPubID | 23462 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1163_092050611X584388 pubmed_primary_21781383 crossref_primary_10_1163_092050611X584388 proquest_miscellaneous_1500757878 informaworld_taylorfrancis_310_1163_092050611X584388 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-01 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of biomaterials science. Polymer ed. |
PublicationTitleAlternate | J Biomater Sci Polym Ed |
PublicationYear | 2012 |
Publisher | Routledge |
Publisher_xml | – name: Routledge |
References | Chacko D.M. (CIT0007) 2000; 268 Bhatia B. (CIT0004) 2010; 4 CIT0010 Osakada F. (CIT0032) 2008; 26 Levine E.M. (CIT0029) 2000; 57 CIT0011 MacLaren R.E. (CIT0002) 2007; 21 Pritchard C.D. (CIT0018) 2010; 31 Wollensak G. (CIT0027) 2004; 24 Redenti S. (CIT0013) 2008; 1 Pritchard C.D. (CIT0019) 2010; 31 Dong Han P.-I.G. (CIT0036) 2006; 2 Cepko C.L. (CIT0028) 1996; 93 CIT0035 CIT0016 CIT0015 CIT0037 CIT0017 Tucker B.A. (CIT0026) 2010; 31 Bull N.D. (CIT0001) 2009; 4 Lem J. (CIT0030) 1999; 96 CIT0021 CIT0020 CIT0023 Osakada F. (CIT0033) 2009; 4 Cui W. (CIT0022) 2010; 11 Marchetti V. (CIT0003) 2010; 120 Hirami Y. (CIT0031) 2009; 458 Ballios B.G. (CIT0006) 2010; 45 Tao S. (CIT0014) 2007; 7 Sant S. (CIT0034) 2011; 5 Kohane D.S. (CIT0024) 2008; 63 Schmitt S. (CIT0012) 2009; 50 CIT0025 CIT0005 CIT0008 Sakaguchi D.S. (CIT0009) 2005; 1049 |
References_xml | – volume: 268 start-page: 842 year: 2000 ident: CIT0007 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2000.2153 – volume: 31 start-page: 9 year: 2010 ident: CIT0026 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.09.015 – volume: 93 start-page: 589 year: 1996 ident: CIT0028 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.2.589 – volume: 4 start-page: 811 year: 2009 ident: CIT0033 publication-title: Nature Protocols doi: 10.1038/nprot.2009.51 – volume: 1049 start-page: 118 year: 2005 ident: CIT0009 publication-title: Ann. N.Y. Acad. Sci. doi: 10.1196/annals.1334.012 – volume: 120 start-page: 3012 year: 2010 ident: CIT0003 publication-title: J. Clin. Invest. doi: 10.1172/JCI42951 – volume: 7 start-page: 695 year: 2007 ident: CIT0014 publication-title: Lab Chip doi: 10.1039/b618583e – volume: 57 start-page: 224 year: 2000 ident: CIT0029 publication-title: Cell. Mol. Life Sci. doi: 10.1007/PL00000686 – volume: 31 start-page: 7978 year: 2010 ident: CIT0018 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.07.026 – volume: 24 start-page: 967 year: 2004 ident: CIT0027 publication-title: Retina doi: 10.1097/00006982-200412000-00021 – volume: 11 start-page: 014108 year: 2010 ident: CIT0022 publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/11/1/014108 – volume: 458 start-page: 126 year: 2009 ident: CIT0031 publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2009.04.035 – volume: 96 start-page: 736 year: 1999 ident: CIT0030 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.2.736 – ident: CIT0016 doi: 10.1163/156856205774576655 – ident: CIT0017 doi: 10.1016/j.biomaterials.2004.01.066 – ident: CIT0023 doi: 10.1016/j.biomaterials.2008.01.011 – volume: 31 start-page: 2153 year: 2010 ident: CIT0019 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.11.074 – ident: CIT0008 doi: 10.1016/j.biomaterials.2007.10.007 – ident: CIT0005 doi: 10.1016/j.stem.2008.10.015 – ident: CIT0011 doi: 10.1634/stemcells.2005-0111 – volume: 4 start-page: 30 year: 2010 ident: CIT0004 publication-title: Open Ophthalmol. J. doi: 10.2174/1874364101004010030 – ident: CIT0010 doi: 10.1016/j.biomaterials.2004.08.022 – volume: 21 start-page: 1352 year: 2007 ident: CIT0002 publication-title: Eye doi: 10.1038/sj.eye.6702842 – volume: 63 start-page: 487 year: 2008 ident: CIT0024 publication-title: Pediatr. Res. doi: 10.1203/01.pdr.0000305937.26105.e7 – ident: CIT0037 doi: 10.1038/nature05161 – ident: CIT0035 doi: 10.1163/092050610X487738 – volume: 4 start-page: 855 year: 2009 ident: CIT0001 publication-title: Regen. Med. doi: 10.2217/rme.09.59 – volume: 5 start-page: 283 year: 2011 ident: CIT0034 publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.313 – ident: CIT0021 doi: 10.1089/ten.2006.12.1197 – volume: 50 start-page: 5901 year: 2009 ident: CIT0012 publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.08-3067 – volume: 2 start-page: 37 year: 2006 ident: CIT0036 publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2006.01.002 – volume: 1 start-page: 19 year: 2008 ident: CIT0013 publication-title: J. Ocul. Biol. Dis. Inform. doi: 10.1007/s12177-008-9005-3 – ident: CIT0015 doi: 10.1016/j.actbio.2006.02.005 – ident: CIT0020 doi: 10.1016/j.biotechadv.2010.01.004 – volume: 26 start-page: 215 year: 2008 ident: CIT0032 publication-title: Nature Biotechnol. doi: 10.1038/nbt1384 – ident: CIT0025 doi: 10.1016/j.addr.2007.04.021 – volume: 45 start-page: 342 year: 2010 ident: CIT0006 publication-title: Can. J. Ophthalmol. doi: 10.3129/i10-070 |
SSID | ssj0001013 ssib008506204 |
Score | 2.0668225 |
Snippet | Age-related macular degeneration, retinitis pigmentosa and glaucoma are among the many retinal degenerative diseases where retinal cell death leads to... |
SourceID | proquest pubmed crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1451 |
SubjectTerms | Animals biocompatibility Caproates - chemistry Cell Adhesion Cell Culture Techniques Cell Differentiation Cell Movement electrospinning Lactones - chemistry Materials Testing Mice, Inbred C57BL Mice, Knockout polycaprolactone Porosity Progenitor cell retina Retina - physiology Retina - surgery Retina - transplantation Rhodopsin - genetics Rhodopsin - metabolism scaffold Stem Cell Transplantation - instrumentation Stem Cell Transplantation - methods Stem Cells - physiology Tissue Culture Techniques Tissue Scaffolds - chemistry |
Title | Mouse Retinal Progenitor Cell Dynamics on Electrospun Poly (ϵ-Caprolactone) |
URI | https://www.tandfonline.com/doi/abs/10.1163/092050611X584388 https://www.ncbi.nlm.nih.gov/pubmed/21781383 https://www.proquest.com/docview/1500757878 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeAAeEIzbuMlITGKK0iVx7LiPEDompFaT2KS-RY6TbEhbWpX0hX_FA7-Dv8Q5dpImZUWMl6iKHNfxOTk-94-Qt1LqUKQRdzkGDkGBl26qeObqLIyUkNlIKXQNTKbi-Cz8POOzweBHJ2tpVaVD_f3aupL_oSrcA7pilewNKNtOCjfgN9AXrkBhuP4TjSdgtiPuQmWgrU6WcxgJX-jSidEj99GCzZt4wNii3XxbrEpMeTMhfmc_Ptr_wB03ViBGLxF4p2x7NP2pr2Khvqrsazn1wTk0k13lSyfPhutwhskQ-DJfXHxt2ab14Ezy8wuFC8LmvjadzEZ8clMy3Mk866X047lR5kZ0f8JEv3F2tSqzrs_CJH80Pova-QhGK_dq0ZbXohdrwIStqG5ks61FbnjQ70haRBjunNog8Pn1J4JgJkAVePB_vj8DhYtZIMF-8-2NQ7FNVTRGkmDJ5gy3yO0ALBMEzWDetBVh2ADQwP7UygBIPJPk0LxwEykX7HBzxp5m1Oubu936MVrQ6QNyv2YH-t7y4kMyyMtdciduUAN3yb1Og8tHZGo4lNYcStccSpFDacOhdF7SDodSZCr6jv76SXu8efCYnB2NT-Njt0bwcDWTYeUWOgsiOE0jpQKpZcaZAvs6Er6SOS-w9WLGQq9QLA39goOmPkpHntCg8_oi1Z5mT8hOCfM_IxT2LivQOvBAAVaBUH4RRHzEpRbYYy7dI4fN7iW6bm-PKCuXyTYK7pGD9omFbe3yl7FhlyBJZdxphcW-Sdj2x940hEuADhiLU2UOO5-AHeYhlEQEY55airaLCPxI-kyy5zdY4Atyd_2hvSQ71XKVvwJ1uUpfGwaF6_Rk8hsIi7NY |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDsCBfd-MxIEeUpI4dpwjKlQF2gqhVuotcpxEQoQENekB_ovv4JcYx2kFiHLoObYT2-OZN7bzHkLnnEuHBS41qDo4BADPjUDQ0JCh4wrGQ08ItTXQ6bJW37kb0EF1NyevrlWqHDrWRBGlr1aLW21G6xXOyKXp2SaFQGQNIHwSzufRIvWYqwQMiNmdmJMiYyslWCrHDNanleUhY4JHZHxq-UeLP6LUDw7T6Ui0jEjNNS27mpdEhuoiynN9VAR1-f6L5nHmzq6j1Qqr4ittXBtoLko30VJjLBG3iVa-sRluoXYnG-URflQ_UUO1h2EGxgkOY4gbUZLg67dUvDzJHGcpvtHiO_nrKMUPWfKGLz4_jIaAriRK_yeNatuo37zpNVpGJdZgSMKdwohlaLvgOF0hbC55SImAVMplluARjRXLXkgcMxYkcKyYAijzAs9kEuCNxQJpSrKDFlJofw9hmJowVkDQBKwjbCas2HapR7lkik4s2EeX48nxZcVkrgQ1Er_MaBjxf4_ZPqpNarxqFo9_yjrf59svyp2TWMuc-GR6tbOxXfgwC-rYRaQRjLsPkNtUqgEulNnVBjP5CEgIuUU4OZjtpadoqdXrtP32bff-EC0DmLP19tARWiiGo-gYAFMRnJTL4gtgfgWZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuMwFL0qIAGz4M0MjxmMxGJYBJI4dhyJDSqteFYVGqRuUOQ48YYordp0MfwX38EvcR03FSBgwTqxE_teX5_rxzkAB0KogCchc5jZOEQAL5xEstRRaRBKLtJISrM0cNPh53fBZY_1GnBS34UxxypNDq0tUUQVq83gHqTaDnBOj93IdxnOQ14PZ08qxAzMccMbbi5wuJ2pNxkutkqBZRKX0fmssDwmTPiI1puWH9T4ZpJ6Q2H6ORCtJqT2MtzXTbHnUB6OxmVypB7fsTx-t60rsDRBquTUutYqNLJiDRaatUDcGvx4xWW4Dtc3_fEoI7fmCjUW6w776JoYLoakmeU5ObPK9yPSL0jLSu-MBuOCdPv5f_L3-clpSmxJbtR_iuxwA-7arX_Nc2ci1eAoKoLS0Sr1QwyboZS-UCJlVGIiFXJPioxpw7GX0sDVkiaBpxlCsiiJXK4Q3Hg8Ua6imzBbYP2_gKBlUm1goItIR_pcetoPWcSE4oZMLNmC49o2sZrwmBs5jTyu8hlO4_d9tgWH0xIDy-HxxbvBa3PHZbVuoq3ISUw_L7Zfu0WMVjCbLrLIsN9jBNyu0QwI8Z2f1l-mP4HpoPCooNvf--gezHfP2vH1RedqBxYRyfl2bWgXZsvhOPuNaKlM_lSD4gUYBAQ9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mouse+Retinal+Progenitor+Cell+Dynamics+on+Electrospun+Poly+%28+%CF%B5+-Caprolactone%29&rft.jtitle=Journal+of+biomaterials+science.+Polymer+ed.&rft.au=Cai%2C+Sophie&rft.au=Smith%2C+Meghan+Elisabeth&rft.au=Redenti%2C+Stephen+Michael&rft.au=Wnek%2C+Gary+Edmund&rft.date=2012-01-01&rft.issn=0920-5063&rft.eissn=1568-5624&rft.volume=23&rft.issue=11&rft.spage=1451&rft.epage=1465&rft_id=info:doi/10.1163%2F092050611X584388&rft.externalDBID=n%2Fa&rft.externalDocID=10_1163_092050611X584388 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5063&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5063&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5063&client=summon |