Mouse Retinal Progenitor Cell Dynamics on Electrospun Poly (ϵ-Caprolactone)

Age-related macular degeneration, retinitis pigmentosa and glaucoma are among the many retinal degenerative diseases where retinal cell death leads to irreversible vision loss and blindness. Working toward a cell-replacement-based therapy for such diseases, a number of research groups have recently...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomaterials science. Polymer ed. Vol. 23; no. 11; pp. 1451 - 1465
Main Authors Cai, Sophie, Smith, Meghan Elisabeth, Redenti, Stephen Michael, Wnek, Gary Edmund, Young, Michael Joseph
Format Journal Article
LanguageEnglish
Published England Routledge 01.01.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Age-related macular degeneration, retinitis pigmentosa and glaucoma are among the many retinal degenerative diseases where retinal cell death leads to irreversible vision loss and blindness. Working toward a cell-replacement-based therapy for such diseases, a number of research groups have recently evaluated the feasibility of using retinal progenitor cells (RPCs) cultured and transplanted on biodegradable polymer substrates to replace damaged retinal tissue. Appropriate polymer substrate design is essential to providing a three-dimensional environment that can facilitate cell adhesion, proliferation and post-transplantation migration into the host environment. In this study, we have designed and fabricated a novel, ultra-thin electrospun poly(ϵ-caprolactone) (PCL) scaffold with microscale fiber diameters, appropriate porosity for infiltration by RPCs, and biologically compatible mechanical characteristics. We have verified that our electrospun PCL scaffold supports robust mouse RPC proliferation, adhesion, and differentiation in vitro, as well as migration into mouse retinal explants. These promising results make PCL a strong candidate for further development as a cell transplantation substrate in retinal regenerative research.
AbstractList Age-related macular degeneration, retinitis pigmentosa and glaucoma are among the many retinal degenerative diseases where retinal cell death leads to irreversible vision loss and blindness. Working toward a cell-replacement-based therapy for such diseases, a number of research groups have recently evaluated the feasibility of using retinal progenitor cells (RPCs) cultured and transplanted on biodegradable polymer substrates to replace damaged retinal tissue. Appropriate polymer substrate design is essential to providing a three-dimensional environment that can facilitate cell adhesion, proliferation and post-transplantation migration into the host environment. In this study, we have designed and fabricated a novel, ultra-thin electrospun poly(Im-caprolactone) (PCL) scaffold with microscale fiber diameters, appropriate porosity for infiltration by RPCs, and biologically compatible mechanical characteristics. We have verified that our electrospun PCL scaffold supports robust mouse RPC proliferation, adhesion, and differentiation in vitro, as well as migration into mouse retinal explants. These promising results make PCL a strong candidate for further development as a cell transplantation substrate in retinal regenerative research.
Age-related macular degeneration, retinitis pigmentosa and glaucoma are among the many retinal degenerative diseases where retinal cell death leads to irreversible vision loss and blindness. Working toward a cell-replacement-based therapy for such diseases, a number of research groups have recently evaluated the feasibility of using retinal progenitor cells (RPCs) cultured and transplanted on biodegradable polymer substrates to replace damaged retinal tissue. Appropriate polymer substrate design is essential to providing a three-dimensional environment that can facilitate cell adhesion, proliferation and post-transplantation migration into the host environment. In this study, we have designed and fabricated a novel, ultra-thin electrospun poly(ϵ-caprolactone) (PCL) scaffold with microscale fiber diameters, appropriate porosity for infiltration by RPCs, and biologically compatible mechanical characteristics. We have verified that our electrospun PCL scaffold supports robust mouse RPC proliferation, adhesion, and differentiation in vitro, as well as migration into mouse retinal explants. These promising results make PCL a strong candidate for further development as a cell transplantation substrate in retinal regenerative research.
Author Cai, Sophie
Wnek, Gary Edmund
Young, Michael Joseph
Smith, Meghan Elisabeth
Redenti, Stephen Michael
Author_xml – sequence: 1
  givenname: Sophie
  surname: Cai
  fullname: Cai, Sophie
  organization: Department of Ophthalmology , Schepens Eye Research Institute, Harvard Medical School
– sequence: 2
  givenname: Meghan Elisabeth
  surname: Smith
  fullname: Smith, Meghan Elisabeth
  organization: Department of Chemical Engineering , Case Western Reserve University
– sequence: 3
  givenname: Stephen Michael
  surname: Redenti
  fullname: Redenti, Stephen Michael
  organization: Department of Biological Sciences , City University of New York, Lehman College
– sequence: 4
  givenname: Gary Edmund
  surname: Wnek
  fullname: Wnek, Gary Edmund
  organization: Department of Macromolecular Science and Engineering , Case Western Reserve University
– sequence: 5
  givenname: Michael Joseph
  surname: Young
  fullname: Young, Michael Joseph
  organization: Department of Ophthalmology , Schepens Eye Research Institute, Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21781383$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1OHDEQhC0EguXnzimaIzkMcY_HHo84RRt-Ii0KikDiZvV6PJGRx97YXqF9sDxHXgmjhQtScupD1dddXYdk1wdvCDkFeg4g2BfaN5RTAfDIZcuk3CEz4ELWXDTtLpm9ynXR2QE5TOmJUgoU2D45aKCTwCSbkcVtWCdT_TTZenTVXQy_jLc5xGpunKu-bTxOVqcq-OrSGZ1jSKu1r-6C21Rnf__Uc1zF4FDnEuzzMdkb0SVz8jaPyMPV5f38pl78uP4-_7qoNZNtrkc9NB0AdIiN1HLgDPtedAJQGj7ytmUDa-mIbNnCyPum75c9FZo2EsRSU82OyNl2b7n9e21SVpNNuuRFb8o7CjilHe9kJ4v105t1vZzMoFbRThg36r2BYhBbgy6vpWhGpW3GbIPPEa1TQNVr1epj1QWkH8D33f9BLraI9WOIEz6H6AaVceNCHCN6bZNi_6RfAFi9kOc
CitedBy_id crossref_primary_10_1007_s10853_014_8707_0
crossref_primary_10_1016_j_actbio_2019_04_057
crossref_primary_10_1016_j_mtcomm_2022_103461
crossref_primary_10_1080_14712598_2017_1346079
crossref_primary_10_1016_j_actbio_2017_03_039
crossref_primary_10_1016_j_biomaterials_2014_08_040
crossref_primary_10_1016_j_mcn_2016_07_006
crossref_primary_10_3390_mi12111312
crossref_primary_10_1007_s10856_013_4911_8
crossref_primary_10_1016_j_bej_2020_107846
crossref_primary_10_3390_bioengineering12030278
Cites_doi 10.1006/bbrc.2000.2153
10.1016/j.biomaterials.2009.09.015
10.1073/pnas.93.2.589
10.1038/nprot.2009.51
10.1196/annals.1334.012
10.1172/JCI42951
10.1039/b618583e
10.1007/PL00000686
10.1016/j.biomaterials.2010.07.026
10.1097/00006982-200412000-00021
10.1088/1468-6996/11/1/014108
10.1016/j.neulet.2009.04.035
10.1073/pnas.96.2.736
10.1163/156856205774576655
10.1016/j.biomaterials.2004.01.066
10.1016/j.biomaterials.2008.01.011
10.1016/j.biomaterials.2009.11.074
10.1016/j.biomaterials.2007.10.007
10.1016/j.stem.2008.10.015
10.1634/stemcells.2005-0111
10.2174/1874364101004010030
10.1016/j.biomaterials.2004.08.022
10.1038/sj.eye.6702842
10.1203/01.pdr.0000305937.26105.e7
10.1038/nature05161
10.1163/092050610X487738
10.2217/rme.09.59
10.1002/term.313
10.1089/ten.2006.12.1197
10.1167/iovs.08-3067
10.1016/j.nano.2006.01.002
10.1007/s12177-008-9005-3
10.1016/j.actbio.2006.02.005
10.1016/j.biotechadv.2010.01.004
10.1038/nbt1384
10.1016/j.addr.2007.04.021
10.3129/i10-070
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2012
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
DOI 10.1163/092050611X584388
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1568-5624
EndPage 1465
ExternalDocumentID 21781383
10_1163_092050611X584388
688391
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.QJ
0BK
0R~
0VX
29J
30N
36B
4.4
53G
5GY
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ACUHS
ADCVX
ADGTB
AEOZL
AEPSL
AEVUW
AEYOC
AGDLA
AGMYJ
AHMBA
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMFWP
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
COF
CS3
DGEBU
DKSSO
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EPL
EST
ESX
E~A
E~B
F5P
GCUZY
GTTXZ
H13
HZ~
H~P
I-F
IL9
IPNFZ
J.P
KYCEM
M4Z
ML0
ML~
NZ-
O9-
PQQKQ
RIG
RNANH
RNS
ROSJB
RTWRZ
S-T
SNACF
SV3
TBQAZ
TDBHL
TEX
TFL
TFT
TFW
TTHFI
TUROJ
TUS
UT5
ZGOLN
~02
~S~
AAGDL
AAHIA
AAYXX
ADMLS
ADYSH
AFRVT
AMPGV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
ROL
ID FETCH-LOGICAL-c384t-fcd271117aa28c8d53a996761a8e5f5443d340fa3b41f59299b906c02816bc0c3
ISSN 0920-5063
IngestDate Thu Jul 10 23:55:01 EDT 2025
Thu Jan 02 22:09:07 EST 2025
Tue Jul 01 01:05:00 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Wed Dec 25 09:07:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords biocompatibility
electrospinning
retina
scaffold
polycaprolactone
Progenitor cell
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c384t-fcd271117aa28c8d53a996761a8e5f5443d340fa3b41f59299b906c02816bc0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21781383
PQID 1500757878
PQPubID 23462
PageCount 15
ParticipantIDs crossref_citationtrail_10_1163_092050611X584388
pubmed_primary_21781383
crossref_primary_10_1163_092050611X584388
proquest_miscellaneous_1500757878
informaworld_taylorfrancis_310_1163_092050611X584388
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of biomaterials science. Polymer ed.
PublicationTitleAlternate J Biomater Sci Polym Ed
PublicationYear 2012
Publisher Routledge
Publisher_xml – name: Routledge
References Chacko D.M. (CIT0007) 2000; 268
Bhatia B. (CIT0004) 2010; 4
CIT0010
Osakada F. (CIT0032) 2008; 26
Levine E.M. (CIT0029) 2000; 57
CIT0011
MacLaren R.E. (CIT0002) 2007; 21
Pritchard C.D. (CIT0018) 2010; 31
Wollensak G. (CIT0027) 2004; 24
Redenti S. (CIT0013) 2008; 1
Pritchard C.D. (CIT0019) 2010; 31
Dong Han P.-I.G. (CIT0036) 2006; 2
Cepko C.L. (CIT0028) 1996; 93
CIT0035
CIT0016
CIT0015
CIT0037
CIT0017
Tucker B.A. (CIT0026) 2010; 31
Bull N.D. (CIT0001) 2009; 4
Lem J. (CIT0030) 1999; 96
CIT0021
CIT0020
CIT0023
Osakada F. (CIT0033) 2009; 4
Cui W. (CIT0022) 2010; 11
Marchetti V. (CIT0003) 2010; 120
Hirami Y. (CIT0031) 2009; 458
Ballios B.G. (CIT0006) 2010; 45
Tao S. (CIT0014) 2007; 7
Sant S. (CIT0034) 2011; 5
Kohane D.S. (CIT0024) 2008; 63
Schmitt S. (CIT0012) 2009; 50
CIT0025
CIT0005
CIT0008
Sakaguchi D.S. (CIT0009) 2005; 1049
References_xml – volume: 268
  start-page: 842
  year: 2000
  ident: CIT0007
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2000.2153
– volume: 31
  start-page: 9
  year: 2010
  ident: CIT0026
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.09.015
– volume: 93
  start-page: 589
  year: 1996
  ident: CIT0028
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.2.589
– volume: 4
  start-page: 811
  year: 2009
  ident: CIT0033
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2009.51
– volume: 1049
  start-page: 118
  year: 2005
  ident: CIT0009
  publication-title: Ann. N.Y. Acad. Sci.
  doi: 10.1196/annals.1334.012
– volume: 120
  start-page: 3012
  year: 2010
  ident: CIT0003
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI42951
– volume: 7
  start-page: 695
  year: 2007
  ident: CIT0014
  publication-title: Lab Chip
  doi: 10.1039/b618583e
– volume: 57
  start-page: 224
  year: 2000
  ident: CIT0029
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/PL00000686
– volume: 31
  start-page: 7978
  year: 2010
  ident: CIT0018
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.07.026
– volume: 24
  start-page: 967
  year: 2004
  ident: CIT0027
  publication-title: Retina
  doi: 10.1097/00006982-200412000-00021
– volume: 11
  start-page: 014108
  year: 2010
  ident: CIT0022
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1088/1468-6996/11/1/014108
– volume: 458
  start-page: 126
  year: 2009
  ident: CIT0031
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2009.04.035
– volume: 96
  start-page: 736
  year: 1999
  ident: CIT0030
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.2.736
– ident: CIT0016
  doi: 10.1163/156856205774576655
– ident: CIT0017
  doi: 10.1016/j.biomaterials.2004.01.066
– ident: CIT0023
  doi: 10.1016/j.biomaterials.2008.01.011
– volume: 31
  start-page: 2153
  year: 2010
  ident: CIT0019
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.11.074
– ident: CIT0008
  doi: 10.1016/j.biomaterials.2007.10.007
– ident: CIT0005
  doi: 10.1016/j.stem.2008.10.015
– ident: CIT0011
  doi: 10.1634/stemcells.2005-0111
– volume: 4
  start-page: 30
  year: 2010
  ident: CIT0004
  publication-title: Open Ophthalmol. J.
  doi: 10.2174/1874364101004010030
– ident: CIT0010
  doi: 10.1016/j.biomaterials.2004.08.022
– volume: 21
  start-page: 1352
  year: 2007
  ident: CIT0002
  publication-title: Eye
  doi: 10.1038/sj.eye.6702842
– volume: 63
  start-page: 487
  year: 2008
  ident: CIT0024
  publication-title: Pediatr. Res.
  doi: 10.1203/01.pdr.0000305937.26105.e7
– ident: CIT0037
  doi: 10.1038/nature05161
– ident: CIT0035
  doi: 10.1163/092050610X487738
– volume: 4
  start-page: 855
  year: 2009
  ident: CIT0001
  publication-title: Regen. Med.
  doi: 10.2217/rme.09.59
– volume: 5
  start-page: 283
  year: 2011
  ident: CIT0034
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.313
– ident: CIT0021
  doi: 10.1089/ten.2006.12.1197
– volume: 50
  start-page: 5901
  year: 2009
  ident: CIT0012
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.08-3067
– volume: 2
  start-page: 37
  year: 2006
  ident: CIT0036
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2006.01.002
– volume: 1
  start-page: 19
  year: 2008
  ident: CIT0013
  publication-title: J. Ocul. Biol. Dis. Inform.
  doi: 10.1007/s12177-008-9005-3
– ident: CIT0015
  doi: 10.1016/j.actbio.2006.02.005
– ident: CIT0020
  doi: 10.1016/j.biotechadv.2010.01.004
– volume: 26
  start-page: 215
  year: 2008
  ident: CIT0032
  publication-title: Nature Biotechnol.
  doi: 10.1038/nbt1384
– ident: CIT0025
  doi: 10.1016/j.addr.2007.04.021
– volume: 45
  start-page: 342
  year: 2010
  ident: CIT0006
  publication-title: Can. J. Ophthalmol.
  doi: 10.3129/i10-070
SSID ssj0001013
ssib008506204
Score 2.0668225
Snippet Age-related macular degeneration, retinitis pigmentosa and glaucoma are among the many retinal degenerative diseases where retinal cell death leads to...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1451
SubjectTerms Animals
biocompatibility
Caproates - chemistry
Cell Adhesion
Cell Culture Techniques
Cell Differentiation
Cell Movement
electrospinning
Lactones - chemistry
Materials Testing
Mice, Inbred C57BL
Mice, Knockout
polycaprolactone
Porosity
Progenitor cell
retina
Retina - physiology
Retina - surgery
Retina - transplantation
Rhodopsin - genetics
Rhodopsin - metabolism
scaffold
Stem Cell Transplantation - instrumentation
Stem Cell Transplantation - methods
Stem Cells - physiology
Tissue Culture Techniques
Tissue Scaffolds - chemistry
Title Mouse Retinal Progenitor Cell Dynamics on Electrospun Poly (ϵ-Caprolactone)
URI https://www.tandfonline.com/doi/abs/10.1163/092050611X584388
https://www.ncbi.nlm.nih.gov/pubmed/21781383
https://www.proquest.com/docview/1500757878
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeAAeEIzbuMlITGKK0iVx7LiPEDompFaT2KS-RY6TbEhbWpX0hX_FA7-Dv8Q5dpImZUWMl6iKHNfxOTk-94-Qt1LqUKQRdzkGDkGBl26qeObqLIyUkNlIKXQNTKbi-Cz8POOzweBHJ2tpVaVD_f3aupL_oSrcA7pilewNKNtOCjfgN9AXrkBhuP4TjSdgtiPuQmWgrU6WcxgJX-jSidEj99GCzZt4wNii3XxbrEpMeTMhfmc_Ptr_wB03ViBGLxF4p2x7NP2pr2Khvqrsazn1wTk0k13lSyfPhutwhskQ-DJfXHxt2ab14Ezy8wuFC8LmvjadzEZ8clMy3Mk866X047lR5kZ0f8JEv3F2tSqzrs_CJH80Pova-QhGK_dq0ZbXohdrwIStqG5ks61FbnjQ70haRBjunNog8Pn1J4JgJkAVePB_vj8DhYtZIMF-8-2NQ7FNVTRGkmDJ5gy3yO0ALBMEzWDetBVh2ADQwP7UygBIPJPk0LxwEykX7HBzxp5m1Oubu936MVrQ6QNyv2YH-t7y4kMyyMtdciduUAN3yb1Og8tHZGo4lNYcStccSpFDacOhdF7SDodSZCr6jv76SXu8efCYnB2NT-Njt0bwcDWTYeUWOgsiOE0jpQKpZcaZAvs6Er6SOS-w9WLGQq9QLA39goOmPkpHntCg8_oi1Z5mT8hOCfM_IxT2LivQOvBAAVaBUH4RRHzEpRbYYy7dI4fN7iW6bm-PKCuXyTYK7pGD9omFbe3yl7FhlyBJZdxphcW-Sdj2x940hEuADhiLU2UOO5-AHeYhlEQEY55airaLCPxI-kyy5zdY4Atyd_2hvSQ71XKVvwJ1uUpfGwaF6_Rk8hsIi7NY
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDsCBfd-MxIEeUpI4dpwjKlQF2gqhVuotcpxEQoQENekB_ovv4JcYx2kFiHLoObYT2-OZN7bzHkLnnEuHBS41qDo4BADPjUDQ0JCh4wrGQ08ItTXQ6bJW37kb0EF1NyevrlWqHDrWRBGlr1aLW21G6xXOyKXp2SaFQGQNIHwSzufRIvWYqwQMiNmdmJMiYyslWCrHDNanleUhY4JHZHxq-UeLP6LUDw7T6Ui0jEjNNS27mpdEhuoiynN9VAR1-f6L5nHmzq6j1Qqr4ittXBtoLko30VJjLBG3iVa-sRluoXYnG-URflQ_UUO1h2EGxgkOY4gbUZLg67dUvDzJHGcpvtHiO_nrKMUPWfKGLz4_jIaAriRK_yeNatuo37zpNVpGJdZgSMKdwohlaLvgOF0hbC55SImAVMplluARjRXLXkgcMxYkcKyYAijzAs9kEuCNxQJpSrKDFlJofw9hmJowVkDQBKwjbCas2HapR7lkik4s2EeX48nxZcVkrgQ1Er_MaBjxf4_ZPqpNarxqFo9_yjrf59svyp2TWMuc-GR6tbOxXfgwC-rYRaQRjLsPkNtUqgEulNnVBjP5CEgIuUU4OZjtpadoqdXrtP32bff-EC0DmLP19tARWiiGo-gYAFMRnJTL4gtgfgWZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuMwFL0qIAGz4M0MjxmMxGJYBJI4dhyJDSqteFYVGqRuUOQ48YYordp0MfwX38EvcR03FSBgwTqxE_teX5_rxzkAB0KogCchc5jZOEQAL5xEstRRaRBKLtJISrM0cNPh53fBZY_1GnBS34UxxypNDq0tUUQVq83gHqTaDnBOj93IdxnOQ14PZ08qxAzMccMbbi5wuJ2pNxkutkqBZRKX0fmssDwmTPiI1puWH9T4ZpJ6Q2H6ORCtJqT2MtzXTbHnUB6OxmVypB7fsTx-t60rsDRBquTUutYqNLJiDRaatUDcGvx4xWW4Dtc3_fEoI7fmCjUW6w776JoYLoakmeU5ObPK9yPSL0jLSu-MBuOCdPv5f_L3-clpSmxJbtR_iuxwA-7arX_Nc2ci1eAoKoLS0Sr1QwyboZS-UCJlVGIiFXJPioxpw7GX0sDVkiaBpxlCsiiJXK4Q3Hg8Ua6imzBbYP2_gKBlUm1goItIR_pcetoPWcSE4oZMLNmC49o2sZrwmBs5jTyu8hlO4_d9tgWH0xIDy-HxxbvBa3PHZbVuoq3ISUw_L7Zfu0WMVjCbLrLIsN9jBNyu0QwI8Z2f1l-mP4HpoPCooNvf--gezHfP2vH1RedqBxYRyfl2bWgXZsvhOPuNaKlM_lSD4gUYBAQ9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mouse+Retinal+Progenitor+Cell+Dynamics+on+Electrospun+Poly+%28+%CF%B5+-Caprolactone%29&rft.jtitle=Journal+of+biomaterials+science.+Polymer+ed.&rft.au=Cai%2C+Sophie&rft.au=Smith%2C+Meghan+Elisabeth&rft.au=Redenti%2C+Stephen+Michael&rft.au=Wnek%2C+Gary+Edmund&rft.date=2012-01-01&rft.issn=0920-5063&rft.eissn=1568-5624&rft.volume=23&rft.issue=11&rft.spage=1451&rft.epage=1465&rft_id=info:doi/10.1163%2F092050611X584388&rft.externalDBID=n%2Fa&rft.externalDocID=10_1163_092050611X584388
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5063&client=summon