Electrowetting-induced capillary flow in a parallel-plate channel
This paper investigated, theoretically and experimentally, the electrowetting-induced capillary rise in a parallel-plate channel. The measured equilibrium height of the meniscus was proportional to the square of the applied potential. A model, based on the kinetic equation of capillary flow with the...
Saved in:
Published in | Journal of colloid and interface science Vol. 296; no. 1; pp. 276 - 283 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
San Diego, CA
Elsevier Inc
01.04.2006
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper investigated, theoretically and experimentally, the electrowetting-induced capillary rise in a parallel-plate channel. The measured equilibrium height of the meniscus was proportional to the square of the applied potential. A model, based on the kinetic equation of capillary flow with the consideration of an electrowetting dynamic contact angle, was established to simulate the capillary rise. The effects of the electrostatic charge and the contact-line friction were linearly added to describe the electrowetting dynamic contact angle. The model was found to be able to adequately describe the experimental data under different initial heights and applied voltages. The non-Poseuille flow effect had little influence in the meniscus rising phenomenon studied in this work. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2005.08.048 |