Coculture and Immobilization of Cellulolytic Bacteria for Enhanced Glucose Isomerase Production from Wheat Straw

Coculture and whole-cell immobilization have myriad industrial applications for enhancing enzyme production. Using pretreated wheat straw as the sole carbon source, improving glucose isomerase production and cell growth by synthetic bacterial consortia was investigated. Thirteen cocultures were cons...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioprocess engineering Vol. 28; no. 2; pp. 327 - 335
Main Authors Kognou, Aristide Laurel Mokale, Chio, Chonlong, Khatiwada, Janak Raj, Shrestha, Sarita, Chen, Xuantong, Zhu, Yuen, Ngane, Rosalie Anne Ngono, Agbor, Gabriel Agbor, Jiang, Zi-Hua, Xu, Chunbao Charles, Qin, Wensheng
Format Journal Article
LanguageEnglish
Published Seoul The Korean Society for Biotechnology and Bioengineering 01.04.2023
Springer Nature B.V
한국생물공학회
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Coculture and whole-cell immobilization have myriad industrial applications for enhancing enzyme production. Using pretreated wheat straw as the sole carbon source, improving glucose isomerase production and cell growth by synthetic bacterial consortia was investigated. Thirteen cocultures were constructed based on the performance and antagonistic activities of monocultures from six cellulolytic soil bacteria. The performance of monocultures immobilized with calcium alginate was also tested. Only five cocultures (A, B, C, G and J) exhibited cell growth and enzyme production synergies. The highest level of synergism (15.17 U/mL) was found in coculture J composed of Mycobacterium sp. MKAL3 (4.06 U/mL) and Stenotrophomonas sp. MKAL4 (3.37 U/mL) with a synergism degree of 2.04. The synergism was unique to growth on wheat straw as it was completely absent in xylose-grown cocultures. The wheat straw degradation synergism could rely on specific compounds released by the MKAL3 strain that promote the activity of the MKAL4 strain and vice versa . However, immobilized strains MKAL1, MKAL2, MKAL3, MKAL4 and MKAL5 improved glucose isomerase production in the wheat straw fermentation process at different sodium alginate concentrations. Immobilization studies of purified glucose isomerases for hydrolysis and saccharification of wheat straw are now being conducted.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1226-8372
1976-3816
DOI:10.1007/s12257-022-0254-y