A simulation optimization based control policy for failure prone one-machine, two-product manufacturing systems

This paper presents the optimal flow control for a one-machine, two-product manufacturing system subject to random failures and repairs. The machine capacity process is assumed to be a finite state Markov chain. The problem is to choose the production rates so as to minimize the expected discounted...

Full description

Saved in:
Bibliographic Details
Published inComputers & industrial engineering Vol. 46; no. 2; pp. 285 - 292
Main Authors Kenne, J.P., Gharbi, A.
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.04.2004
Pergamon Press Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents the optimal flow control for a one-machine, two-product manufacturing system subject to random failures and repairs. The machine capacity process is assumed to be a finite state Markov chain. The problem is to choose the production rates so as to minimize the expected discounted cost of inventory/backlog over an infinite horizon. We first show that for constant demand rates and exponential failure and repair time distributions of the machine, the hedging point policy is optimal. Next, the hedging point policy is extended to non-exponential failure and repair time distributions models. The structure of the hedging point policy is parameterized by two factors representing the thresholds of involved products. With such a policy, simulation experiments are coupled with experimental design and response surface methodology to estimate the optimal control policy. Our results reveal that the hedging point policy is also applicable to a wide variety of complex problems (i.e. non-exponential failure and repair time distributions) where analytical solutions may not be easily obtained.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0360-8352
1879-0550
DOI:10.1016/j.cie.2003.12.004