Using TEM Cell Measurements to Estimate the Maximum Radiation From PCBs With Cables Due to Magnetic Field Coupling
Common-mode currents can be induced on cables attached to printed circuit boards (PCBs) due to electric and magnetic field coupling. This paper describes a technique for using transverse electromagnetic (TEM) cell measurements to obtain an effective common-mode voltage (or magnetic moment) that quan...
Saved in:
Published in | IEEE transactions on electromagnetic compatibility Vol. 50; no. 2; pp. 419 - 423 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.05.2008
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Common-mode currents can be induced on cables attached to printed circuit boards (PCBs) due to electric and magnetic field coupling. This paper describes a technique for using transverse electromagnetic (TEM) cell measurements to obtain an effective common-mode voltage (or magnetic moment) that quantifies the ability of traces and integrated circuits on PCBs to drive common-mode currents onto cables due to magnetic field coupling. This equivalent common-mode voltage can be used to reduce the complexity of full-wave models that calculate the radiated emissions from a system containing the board. It can also be used without full-wave modeling to provide a relative indication of the likelihood that a particular board design will have unintentional radiated emissions problems due to magnetic field coupling. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0018-9375 1558-187X |
DOI: | 10.1109/TEMC.2008.919026 |