The exceptional generalised geometry of supersymmetric AdS flux backgrounds
A bstract We analyse generic AdS flux backgrounds preserving eight supercharges in D = 4 and D = 5 dimensions using exceptional generalised geometry. We show that they are described by a pair of globally defined, generalised structures, identical to those that appear for flat flux backgrounds but wi...
Saved in:
Published in | The journal of high energy physics Vol. 2016; no. 12; pp. 1 - 37 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A
bstract
We analyse generic AdS flux backgrounds preserving eight supercharges in
D
= 4 and
D
= 5 dimensions using exceptional generalised geometry. We show that they are described by a pair of globally defined, generalised structures, identical to those that appear for flat flux backgrounds but with different integrability conditions. We give a number of explicit examples of such “exceptional Sasaki-Einstein” backgrounds in type IIB supergravity and M-theory. In particular, we give the complete analysis of the generic AdS
5
M-theory backgrounds. We also briefly discuss the structure of the moduli space of solutions. In all cases, one structure defines a “generalised Reeb vector” that generates a Killing symmetry of the background corresponding to the R-symmetry of the dual field theory, and in addition encodes the generic contact structures that appear in the
D
= 4 M-theory and
D
= 5 type IIB cases. Finally, we investigate the relation between generalised structures and quantities in the dual field theory, showing that the central charge and R-charge of BPS wrapped-brane states are both encoded by the generalised Reeb vector, as well as discussing how volume minimisation (the dual of
a
- and
ℱ
-maximisation) is encoded. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP12(2016)146 |