Plasmin-induced smooth muscle cell proliferation requires epidermal growth factor activation through an extracellular pathway

Plasminogen activators are used routinely for thrombolysis. They lead to the generation of the protease, plasmin, which can induce smooth muscle cell proliferation and may thus promote further intimal hyperplasia in the thrombolysed vessel. We have shown recently that plasmin induces extracellular s...

Full description

Saved in:
Bibliographic Details
Published inSurgery Vol. 138; no. 2; pp. 180 - 186
Main Authors Roztocil, Elisa, Nicholl, Suzanne M., Galaria, Irfan I., Davies, Mark G.
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY Mosby, Inc 01.08.2005
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Plasminogen activators are used routinely for thrombolysis. They lead to the generation of the protease, plasmin, which can induce smooth muscle cell proliferation and may thus promote further intimal hyperplasia in the thrombolysed vessel. We have shown recently that plasmin induces extracellular signal-regulated kinase 1/2 (ERK1/2)–mediated cell proliferation. Plasmin can also activate metalloproteinases on the cell surface, which can release the tethered ligand heparin-binding epidermal growth factor (HB-EGF), which can in turn activate the epidermal growth factor receptor (EGFR). Murine aortic smooth muscle cells were cultured in vitro. Assays of DNA synthesis and cell proliferation, EGFR phosphorylation, and ERK1/2 activation were examined in response to plasmin in the presence and absence of the plasmin inhibitors (ɛ-aminocaproic acid and aprotinin), matrix metalloproteinase (MMP) inhibitor GM6001, HB-EGF inhibitor CRM197, HB-EGF inhibitory antibodies, EGF inhibitory antibodies, and the EGFR inhibitor AG1478. Plasmin-induced smooth muscle cell DNA synthesis, which was blocked by EGFR and HB-EGF inhibition. Plasmin-induced time-dependent EGFR phosphorylation and ERK1/2 activation, which were inhibited by AG1478. This response was dependent on the proteolytic activity of plasmin since both plasmin inhibitors blocked the response. EGFR phosphorylation by plasmin was blocked by inhibition of MMP activity and the ligand HB-EGF. EGFR phosphorylation by EGF was not interrupted by inhibition of plasmin, MMPs, or HB-EGF. Direct blockade of the EGFR prevented activation by both plasmin and EGF. Plasmin can induce smooth muscle cell proliferation through activation of EGFR by an extracellular MMP-mediated, HB-EGF–dependent process.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0039-6060
1532-7361
DOI:10.1016/j.surg.2005.06.014