Production of reuterin in a fermented milk product by Lactobacillus reuteri: Inhibition of pathogens, spoilage microorganisms, and lactic acid bacteria

We assessed the antimicrobial activity of reuterin produced in vitro in glycerol aqueous solutions in situ by Lactobacillus reuteri ATCC 53608 as part of a fermented milk product against starter (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus), spoilage (Penicillium expansu...

Full description

Saved in:
Bibliographic Details
Published inJournal of dairy science Vol. 100; no. 6; pp. 4258 - 4268
Main Authors Ortiz-Rivera, Y., Sánchez-Vega, R., Gutiérrez-Méndez, N., León-Félix, J., Acosta-Muñiz, C., Sepulveda, D.R.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We assessed the antimicrobial activity of reuterin produced in vitro in glycerol aqueous solutions in situ by Lactobacillus reuteri ATCC 53608 as part of a fermented milk product against starter (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus), spoilage (Penicillium expansum), pathogenic (Staphylococcus aureus Salmonella enterica ssp. enterica, and Listeria monocytogenes), and pathogen surrogate (Escherichia coli DH5α) microorganisms. We also assayed the influence of cold storage (28 d at 4°C) and reuterin on the color and rheology of the fermented milk product. We obtained maximum reuterin concentrations of 107.5 and 33.97 mM in glycerol aqueous solution and fermented milk product, respectively. Reuterin was stable throughout its refrigerated shelf life. Gram-positive microorganisms were more resistant to reuterin than gram-negative microorganisms. Penicillium expansum and Lactobacillus reuteri ATCC 53608 survived at concentrations up to 10 and 8.5 mM, respectively. Escherichia coli DH5α was the most sensitive to reuterin (0.9 mM). The presence of reuterin did not cause relevant changes in the quality parameters of the fermented milk product, including pH, acidity, soluble solids, color, and rheological aspects (storage and loss moduli and viscosity). This study demonstrated the viability of using Lactobacillus reuteri ATCC 53608 as a biopreservative in a fermented milk product through reuterin synthesis, without drastically modifying its quality parameters.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2016-11534