Potential role of MCP-1 in endothelial cell tight junction 'opening': signaling via Rho and Rho kinase
The expression of the monocyte chemoattractant protein-1 (MCP-1) receptor CCR2 by brain endothelial cells suggests that MCP-1 may have other functions than purely driving leukocyte migration into brain parenchyma during inflammation. This study examines one of these potential novel roles of MCP-1 re...
Saved in:
Published in | Journal of cell science Vol. 116; no. Pt 22; pp. 4615 - 4628 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
15.11.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The expression of the monocyte chemoattractant protein-1 (MCP-1) receptor CCR2 by brain endothelial cells suggests that MCP-1 may have other functions than purely driving leukocyte migration into brain parenchyma during inflammation. This study examines one of these potential novel roles of MCP-1 regulation of endothelial permeability using primary cultures of mouse brain endothelial cells. MCP-1 induces reorganization of actin cytoskeleton (stress fiber formation) and redistribution of tight junction proteins, ZO-1, ZO-2 occludin and claudin-5, from the Triton X-100-soluble to the Triton X-100-insoluble fractions. These morphological changes are associated with a decrease in transendothelial electrical membrane resistance and an increase in [14C]inulin permeability. MCP-1 did not induce these events in brain endothelial cells prepared from mice genotype CCR2-/-. The Rho kinase inhibitor Y27632 and inhibition of Rho (C3 exoenzyme, and dominant negative mutant of Rho, RhoT19N) prevented MCP-1-induced stress fiber assembly, reorganization of tight junction proteins and alterations in endothelial permeability. In all, this suggests that a small GTPase Rho and Rho kinase have a pivotal role in MCP-1-induced junction disarrangement. These data are the first to strongly suggest that MCP-1, via CCR2 present on brain endothelial cells, contributes to increased brain endothelial permeability. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.00755 |