Deflection prediction of micro-milling Inconel 718 thin-walled parts

There has been a great increase in the applications of micro thin-walled parts in many fields, such as medical devices, aerospace and so on. The requirement of machining dimensional accuracy for micro thin-walled parts is very high. Inconel 718has the advantages of high strength and corrosion resist...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials processing technology Vol. 291; p. 117003
Main Authors Jia, Zhenyuan, Lu, Xiaohong, Gu, Han, Ruan, Feixiang, Liang, Steven Y.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:There has been a great increase in the applications of micro thin-walled parts in many fields, such as medical devices, aerospace and so on. The requirement of machining dimensional accuracy for micro thin-walled parts is very high. Inconel 718has the advantages of high strength and corrosion resistance, which can meet the requirements of micro thin-walled parts under poor applying working conditions. However, it is difficult to machine. Micro-milling is a potentially effective processing technique for processing Inconel 718 thin-walled parts. Because of the low rigidity, deflection of Inconel 718 thin-walled parts is easy to occur in micro-milling process, which affects the machining accuracy. So far, the research on the deflection of micro-milling Inconel 718 thin-walled parts is still blank. In this paper, a method of deflection prediction of micro-milling thin-walled parts is proposed. Firstly, a simulation model of micro-milling Inconel 718 thin-walled parts process is established, which realizes the prediction of milling force. Then, by using element birth/death technique, a deflection prediction model of micro-milling thin-walled parts is built based on the predicted value of milling force output by the simulation model, which achieves the more efficient and accurate deflection prediction of micro-milling thin-walled parts. Finally, the correctness of the built simulation model of micro-milling thin-walled parts process as well as the deflection prediction model of micro-milling thin-walled parts are verified by experiments. The research provides a feasible way for deflection prediction of micro-milling thin-walled parts, and lays foundation for deflection suppression and machining accuracy improvement of micro-milling thin-walled parts to a certain extent.
ISSN:0924-0136
DOI:10.1016/j.jmatprotec.2020.117003