A cost-efficient high-performance dynamic TCAM with pipelined hierarchical searching and shift redundancy architecture

This paper describes a 4.5-Mb dynamic ternary CAM (DTCAM) which is suitable for networking applications. A dynamic TCAM cell structure in 130-nm embedded DRAM technology is used to realize the small cell size of 3.59 /spl mu/m/sup 2/. In addition, a novel array architecture of TCAM, the pipelined hi...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 40; no. 1; pp. 245 - 253
Main Authors Noda, H., Inoue, K., Kuroiwa, M., Igaue, F., Yamamoto, K., Mattausch, H.J., Koide, T., Amo, A., Hachisuka, A., Soeda, S., Hayashi, I., Morishita, F., Dosaka, K., Arimoto, K., Fujishima, K., Anami, K., Yoshihara, T.
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.01.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper describes a 4.5-Mb dynamic ternary CAM (DTCAM) which is suitable for networking applications. A dynamic TCAM cell structure in 130-nm embedded DRAM technology is used to realize the small cell size of 3.59 /spl mu/m/sup 2/. In addition, a novel array architecture of TCAM, the pipelined hierarchical searching (PHS) architecture, is proposed. The PHS architecture is found to be suitable for realizing small area penalty, high-throughput searching and low-voltage operation simultaneously. With the combination of the DTCAM cell and the PHS architecture, small silicon area of 32 mm/sup 2/ for a fabricated 4.5-Mb DTCAM chip, high performance of 143 M searches per second and low power dissipation of 1.1 W have been achieved. To improve the yield of TCAMs, a novel shift redundancy technique is applied and estimated to result in 3.6-times yield improvement. These techniques and architectures described in this report are attractive for realizing cost-efficient, large-scale, high-performance TCAM chips.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2004.838016