Full-Field Electroretinography, Pupillometry, and Luminance Thresholds in X-Linked Retinoschisis

To evaluate the nature and extent of functional abnormality in X-linked retinoschisis (XLRS) by comparing three dark-adapted, full-field measures: the electroretinogram (ERG), pupillary light reflex (PLR), and luminance threshold. ERGs, PLRs (pupil constriction due to light stimulation), and luminan...

Full description

Saved in:
Bibliographic Details
Published inInvestigative ophthalmology & visual science Vol. 61; no. 6; p. 53
Main Authors McAnany, J. Jason, Park, Jason C., Fishman, Gerald A., Collison, Frederick T.
Format Journal Article
LanguageEnglish
Published United States The Association for Research in Vision and Ophthalmology 24.06.2020
Subjects
Online AccessGet full text
ISSN1552-5783
0146-0404
1552-5783
DOI10.1167/iovs.61.6.53

Cover

Loading…
More Information
Summary:To evaluate the nature and extent of functional abnormality in X-linked retinoschisis (XLRS) by comparing three dark-adapted, full-field measures: the electroretinogram (ERG), pupillary light reflex (PLR), and luminance threshold. ERGs, PLRs (pupil constriction due to light stimulation), and luminance thresholds were measured from seven XLRS subjects and from 10 normally sighted, age-similar controls. ERGs and PLRs were obtained for a range of flash strengths, and these data were fit with Naka-Rushton functions to derive the maximum saturated b-wave (Vmax) and PLR (Pmax) amplitudes. Additionally, semi-saturation constants were obtained for the b-wave (σ) and PLR (s). Values of 1/σ and 1/s provide sensitivity measures. Full-field, dark-adapted luminance thresholds were measured using 465-nm and 642-nm flash stimuli. Vmax and 1/σ were significantly reduced in XLRS compared to the controls (both t ≥ 5.33, P < 0.001). In comparison, Pmax was normal in the XLRS subjects (t = 1.39, P = 0.19), but 1/s was reduced (t = 7.84, P < 0.001). Luminance thresholds for the control and XLRS groups did not differ significantly (F = 3.57, P = 0.08). Comparisons among measures indicated that pupil sensitivity was correlated with luminance threshold for the long- and short-wavelength stimuli (both, r ≥ 0.77, P ≤ 0.04). Correlations among all other measures were not statistically significant. The results indicate that the presumed bipolar cell dysfunction in XLRS, indicated by b-wave abnormalities, has complex downstream effects: Dark-adapted luminance threshold and maximum pupil responses are not significantly affected, but pupil sensitivity is reduced.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1552-5783
0146-0404
1552-5783
DOI:10.1167/iovs.61.6.53