Candida rugosa Lipase Immobilization on Fe3O4 Coated Carboxyl Functionalised Multiwalled Carbon Nanotubes for Production of Food Flavour Esters

The objective of the study was carboxyl functionalization of Fe 3 O 4 coated multiwalled carbon nanotubes (MWCNTs), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) / N-hydroxysuccinimide (NHS) mediated immobilization of Candida rugosa lipase on MWCNTs through rigid base of dopamin...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioprocess engineering Vol. 28; no. 2; pp. 310 - 326
Main Authors Kaur, Parneet, Jana, Asim Kumar
Format Journal Article
LanguageEnglish
Published Seoul The Korean Society for Biotechnology and Bioengineering 01.04.2023
Springer Nature B.V
한국생물공학회
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The objective of the study was carboxyl functionalization of Fe 3 O 4 coated multiwalled carbon nanotubes (MWCNTs), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) / N-hydroxysuccinimide (NHS) mediated immobilization of Candida rugosa lipase on MWCNTs through rigid base of dopamine, flexible spacer ethyl methacrylate with adipic acid for improved enzyme characteristics including enhanced dispersion and separation; and use in production of flavour esters ethyl butyrate and butyl butyrate. The immobilized enzyme nanoparticles were characterised by using high resolution transmission electron microscopy (HRTEM), Fourier transmission infrared spectroscopy (FTIR), x-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), zeta potential analysis. Maximum protein loading of 133.83 mg g −1 support and immobilized enzyme activity 4,889.2 U g −1 support was obtained at the optimal time, pH, temperature, protein to support ratio. Immobilized enzyme was tested for pH, thermal, and storage stability. The esterification yields of ethyl butyrate 89.69% and butyl butyrate 91.07% were obtained under optimal conditions. The immobilized enzyme was separated from reaction mixture using the superparamagnetic property and reused for 11 cycles of esterification. Study showed the immobilized enzyme could be used for production of various fruit flavour esters.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1226-8372
1976-3816
DOI:10.1007/s12257-022-0296-1