Indole-3-acetic Acid Production from Alginate by Vibrio sp. dhg: Physiology and Characteristics

The production of indole-3-acetic acid (IAA) by bacteria has attracted considerable attention in plant studies due to its significant role as a plant growth regulator. In this study, it was confirmed that Vibrio sp. dhg, a novel microbial platform capable of assimilating alginate, can naturally synt...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioprocess engineering Vol. 28; no. 4; pp. 695 - 703
Main Authors Shin, Hyo Jeong, Woo, Sunghwa, Jung, Gyoo Yeol, Park, Jong Moon
Format Journal Article
LanguageEnglish
Published Seoul The Korean Society for Biotechnology and Bioengineering 01.08.2023
Springer Nature B.V
한국생물공학회
Subjects
Online AccessGet full text
ISSN1226-8372
1976-3816
DOI10.1007/s12257-023-0056-x

Cover

Loading…
Abstract The production of indole-3-acetic acid (IAA) by bacteria has attracted considerable attention in plant studies due to its significant role as a plant growth regulator. In this study, it was confirmed that Vibrio sp. dhg, a novel microbial platform capable of assimilating alginate, can naturally synthesize IAA. The effects of L-tryptophan and the carbon sources obtained from brown algae (glucose, mannitol, and alginate) were also examined to characterize the IAA biosynthesis in Vibrio sp. dhg. The highest IAA production (9.32 ± 0.25 mg/L) was observed in the alginate medium containing 0.8 g/L of L-tryptophan. Interestingly, alginate was found to be a favorable option for IAA production due to the rapid uptake of L-tryptophan during the exponential phase. By adding external NADH, this study demonstrated that the low net reducing equivalents in the alginate medium were linked to this phenomenon. This study is the first to provide alginate as the sole carbon source for IAA production and to propose that the oxidoreduction potentials of the carbon source can affect bacterial IAA biosynthesis.
AbstractList The production of indole-3-acetic acid (IAA) by bacteria has attracted considerable attention in plant studies due to its significant role as a plant growth regulator. In this study, it was confirmed that Vibrio sp. dhg, a novel microbial platform capable of assimilating alginate, can naturally synthesize IAA. The effects of L-tryptophan and the carbon sources obtained from brown algae (glucose, mannitol, and alginate) were also examined to characterize the IAA biosynthesis in Vibrio sp. dhg. The highest IAA production (9.32 ± 0.25 mg/L) was observed in the alginate medium containing 0.8 g/L of L-tryptophan. Interestingly, alginate was found to be a favorable option for IAA production due to the rapid uptake of L-tryptophan during the exponential phase. By adding external NADH, this study demonstrated that the low net reducing equivalents in the alginate medium were linked to this phenomenon. This study is the first to provide alginate as the sole carbon source for IAA production and to propose that the oxidoreduction potentials of the carbon source can affect bacterial IAA biosynthesis.
The production of indole-3-acetic acid (IAA) by bacteria has attracted considerable attention in plant studies due to its significant role as a plant growth regulator. In this study, it was confirmed that Vibrio sp. dhg, a novel microbial platform capable of assimilating alginate, can naturally synthesize IAA. The effects of L-tryptophan and the carbon sources obtained from brown algae (glucose, mannitol, and alginate) were also examined to characterize the IAA biosynthesis in Vibrio sp. dhg. The highest IAA production (9.32 ± 0.25 mg/L) was observed in the alginate medium containing 0.8 g/L of L-tryptophan. Interestingly, alginate was found to be a favorable option for IAA production due to the rapid uptake of L-tryptophan during the exponential phase. By adding external NADH, this study demonstrated that the low net reducing equivalents in the alginate medium were linked to this phenomenon. This study is the first to provide alginate as the sole carbon source for IAA production and to propose that the oxidoreduction potentials of the carbon source can affect bacterial IAA biosynthesis.
The production of indole-3-acetic acid (IAA) by bacteria has attracted considerable attention in plant studies due to its significant role as a plant growth regulator. In this study, it was confirmed that Vibrio sp. dhg, a novel microbial platform capable of assimilating alginate, can naturally synthesize IAA. The effects of L-tryptophan and the carbon sources obtained from brown algae (glucose, mannitol, and alginate) were also examined to characterize the IAA biosynthesis in Vibrio sp. dhg. The highest IAA production (9.32 ± 0.25 mg/L) was observed in the alginate medium containing 0.8 g/L of L-tryptophan. Interestingly, alginate was found to be a favorable option for IAA production due to the rapid uptake of L-tryptophan during the exponential phase. By adding external NADH, this study demonstrated that the low net reducing equivalents in the alginate medium were linked to this phenomenon. This study is the first to provide alginate as the sole carbon source for IAA production and to propose that the oxidoreduction potentials of the carbon source can affect bacterial IAA biosynthesis. KCI Citation Count: 1
Author Woo, Sunghwa
Shin, Hyo Jeong
Park, Jong Moon
Jung, Gyoo Yeol
Author_xml – sequence: 1
  givenname: Hyo Jeong
  surname: Shin
  fullname: Shin, Hyo Jeong
  organization: Department of Chemical Engineering, Pohang University of Science and Technology
– sequence: 2
  givenname: Sunghwa
  surname: Woo
  fullname: Woo, Sunghwa
  organization: Department of Chemical Engineering, Pohang University of Science and Technology
– sequence: 3
  givenname: Gyoo Yeol
  surname: Jung
  fullname: Jung, Gyoo Yeol
  email: gyjung@postech.ac.kr
  organization: Department of Chemical Engineering, Pohang University of Science and Technology, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology
– sequence: 4
  givenname: Jong Moon
  surname: Park
  fullname: Park, Jong Moon
  email: jmpark@postech.ac.kr
  organization: Department of Chemical Engineering, Pohang University of Science and Technology, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003012116$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kUFrGzEQhUVJoHbSH9CboJdSUCqNdiW5N2PaxBBICEmuQtZq17LXkiutIf73kbOFQqA9vWH43sxIb4rOQgwOoc-MXjFK5ffMAGpJKHBCaS3Iywc0YTMpCFdMnJUaQBDFJXxE05w3lFZSKTVBehma2DvCibFu8BbPrW_wfYrNwQ4-BtymuMPzvvPBDA6vjvjZr5KPOO-vcLPufuD79TH72MfuiE1o8GJtkrGDSz6XcfkSnbemz-7TH71AT79-Pi5uyO3d9XIxvyWWq2ogwjDpmGyUqA1tOGdOCDuTVDkq2KoxwAwFIRzwClxbsVqWhpB1UWgVUH6Bvo1zQ2r11nodjX_TLupt0vOHx6VmlAMoCQX-OsL7FH8fXB70zmfr-t4EFw9Zc1ZzpkCqqqBf3qGbeEihPEWDElzATLLTdjlSNsWck2u19YM5_d-QjO_LZn1KSY8p6ZKSPqWkX4qTvXPuk9-ZdPyvB0ZPLmzoXPp7079Nr31Bo7U
CitedBy_id crossref_primary_10_1016_j_bioflm_2023_100165
crossref_primary_10_3390_ijms26062749
crossref_primary_10_1016_j_biortech_2024_130988
crossref_primary_10_3389_fcimb_2024_1340910
crossref_primary_10_1007_s12257_023_0206_1
crossref_primary_10_1016_j_ymben_2024_11_001
crossref_primary_10_1016_j_micres_2024_127881
crossref_primary_10_1007_s12257_024_00022_8
crossref_primary_10_1007_s12257_024_00023_7
Cites_doi 10.4014/jmb.1004.04033
10.1007/s00284-010-9674-6
10.1007/s12223-008-0054-6
10.1093/aob/mci083
10.1007/s10482-013-0095-y
10.4067/S0718-95162017000400012
10.21769/BioProtoc.3230
10.2217/fmb-2019-0051
10.1007/s11104-007-9314-5
10.1007/s12257-022-0217-3
10.1186/s12866-016-0756-x
10.1038/nature12771
10.1128/jb.105.1.303-312.1971
10.1016/0003-2697(62)90095-7
10.1016/j.jchromb.2017.04.048
10.7717/peerj.7258
10.1128/JB.187.22.7866-7869.2005
10.1016/j.biortech.2012.10.012
10.1128/JB.00804-08
10.1128/jb.121.1.70-76.1975
10.1128/AEM.02072-08
10.1002/biot.201400860
10.1016/j.femsle.2005.03.048
10.1007/s12257-020-0390-1
10.1007/s41742-019-00197-6
10.1007/s12257-020-0313-1
10.1128/AEM.01614-17
10.1128/AEM.01770-06
10.1186/s13068-016-0494-1
10.1007/s12257-022-0301-8
10.3109/1040841X.2012.716819
10.1016/j.ijhydene.2008.11.070
10.1371/journal.pone.0098367
10.1038/s41467-019-10371-1
10.1007/s11738-009-0297-0
10.1007/s00284-013-0378-6
10.1007/s40003-013-0065-7
10.1111/j.1365-2672.2011.04976.x
10.1186/s13068-022-02157-3
10.1007/s10482-012-9838-4
ContentType Journal Article
Copyright The Korean Society for Biotechnology and Bioengineering and Springer 2023
The Korean Society for Biotechnology and Bioengineering and Springer 2023.
Copyright_xml – notice: The Korean Society for Biotechnology and Bioengineering and Springer 2023
– notice: The Korean Society for Biotechnology and Bioengineering and Springer 2023.
DBID AAYXX
CITATION
3V.
7QO
7QP
7T7
7WY
7WZ
7X7
7XB
87Z
88A
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
L6V
LK8
M0C
M0S
M2P
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
7S9
L.6
ACYCR
DOI 10.1007/s12257-023-0056-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global
Health & Medical Collection (Alumni)
Science Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
AGRICOLA
AGRICOLA - Academic
Korean Citation Index
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1976-3816
EndPage 703
ExternalDocumentID oai_kci_go_kr_ARTI_10322872
10_1007_s12257_023_0056_x
GroupedDBID ---
-4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.UV
.VR
06C
06D
0R~
0VY
1N0
203
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
3V.
4.4
406
408
40D
40E
53G
5GY
5VS
6NX
7WY
7X7
88A
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8UJ
95-
95.
95~
96X
9ZL
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
E3Z
EBD
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
KOV
KVFHK
L6V
LK8
LLZTM
M0C
M0L
M2P
M4Y
M7P
M7S
MA-
ML0
MZR
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OK1
P19
P2P
P62
P9N
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TUC
TUS
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
Z7U
Z7V
Z7W
Z8Q
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7QO
7QP
7T7
7XB
8FD
8FK
ABRTQ
C1K
FR3
K9.
L.-
P64
PKEHL
PQEST
PQGLB
PQUKI
Q9U
7S9
L.6
AABYN
AAEOY
AAFGU
AAGCJ
AAUCO
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEEQQ
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AJGSW
AKQUC
ESTFP
SQXTU
UNUBA
ID FETCH-LOGICAL-c384t-6a17e17d865a0d331e66c9708e061bda21a0266e2342ef41571a06755712f8203
IEDL.DBID U2A
ISSN 1226-8372
IngestDate Wed May 08 03:11:38 EDT 2024
Mon Jul 21 22:46:21 EDT 2025
Fri Jul 25 19:10:17 EDT 2025
Tue Jul 01 02:05:45 EDT 2025
Thu Apr 24 22:51:20 EDT 2025
Fri Feb 21 02:42:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords alginate
indole-3-acetic acid (IAA)
L-tryptophan
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c384t-6a17e17d865a0d331e66c9708e061bda21a0266e2342ef41571a06755712f8203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2863629710
PQPubID 54768
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10322872
proquest_miscellaneous_3153182784
proquest_journals_2863629710
crossref_citationtrail_10_1007_s12257_023_0056_x
crossref_primary_10_1007_s12257_023_0056_x
springer_journals_10_1007_s12257_023_0056_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230800
2023-08-00
20230801
2023-08
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 8
  year: 2023
  text: 20230800
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Dordrecht
PublicationTitle Biotechnology and bioprocess engineering
PublicationTitleAbbrev Biotechnol Bioproc E
PublicationYear 2023
Publisher The Korean Society for Biotechnology and Bioengineering
Springer Nature B.V
한국생물공학회
Publisher_xml – name: The Korean Society for Biotechnology and Bioengineering
– name: Springer Nature B.V
– name: 한국생물공학회
References WangJKimY MRheeH SLeeM WParkJ MBioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3Bioresour. Technol.20131351992061:CAS:528:DC%2BC38XhslejsL3M23186687
BouknightR RSadoffH LTryptophan catabolism in Bacillus megateriumJ. Bacteriol.197512170761:CAS:528:DyaE2MXot1OmsQ%3D%3D803956285614
DucaDLorvJPattenC LRoseDGlickB RIndole-3-acetic acid in plant–microbe interactionsAntonie Van Leeuwenhoek2014106851251:CAS:528:DC%2BC2cXhtVKhsb3I24445491
MohiteBIsolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growthJ. Soil Sci. Plant Nutr.201313638649
Enquist-NewmanMFaustA M EBravoD DSantosC N SRaisnerR MHanelASarvabhowmanPLeCRegitskyD DCooperS RPeereboomLClarkAMartinezYGoldsmithJChoM YDonohoueP DLuoLLambersonBTamrakarPKimE JVillariJ LGillATripathiS AKaramcheduPParedesC JRajgarhiaVKotlarH KBaileyR BMillerD JOhlerN LSwimmerCYoshikuniYEfficient ethanol production from brown macroalgae sugars by a synthetic yeast platformNature20145052392431:CAS:528:DC%2BC2cXltVSrsA%3D%3D24291791
ZhangGRenXLiangXWangYFengDZhangYXianMZouHImproving the microbial production of amino acids: from conventional approaches to recent trendsBiotechnol. Bioprocess Eng.2021267087271:CAS:528:DC%2BB3MXisVCgsr3N
BharuchaUPatelKTrivediU BOptimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra)Agric. Res.201322152211:CAS:528:DC%2BC3sXhsVSitbbI
SasirekhaBShivakumarSSulliaS BStatistical optimization for improved indole-3-acetic acid (iaa) production by Pseudomonas aeruginosa and demonstration of enhanced plant growth promotionJ. Soil Sci. Plant Nutr.201212863873
GutierrezC KMatsuiG YLincolnD ELovellC RProduction of the phytohormone indole-3-acetic acid by estuarine species of the genus VibrioAppl. Environ. Microbiol.200975225322581:CAS:528:DC%2BD1MXlsFCiu7Y%3D192184112675210
SalcherOLingensFMetabolism of tryptophan by Pseudomonas aureofaciens and its relationship to pyrrolnitrin biosynthesisJ. Gen. Microbiol.19801214654711:CAS:528:DyaL3MXkt1SqurY%3D7264603
WooSLimH GHanY HParkSNohM HBaekDMoonJ HSeoS WJungG YA Vibrio-based microbial platform for accelerated lignocellulosic sugar conversionBiotechnol. Biofuels. Bioprod.202215581:CAS:528:DC%2BB38XisVCktb7F356144599134653
LeeY-GJuYSunLParkSJinY-SKimS RAcetate-rich cellulosic hydrolysates and their bioconversion using yeastsBiotechnol. Bioprocess Eng.2022278908991:CAS:528:DC%2BB38XjtVGrurfM
ChaiharnMLumyongSScreening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growthCurr. Microbiol.2011621731811:CAS:528:DC%2BC3cXhsF2gt7%2FP20552360
GangSSharmaSSarafMBuckMSchumacherJAnalysis of indole-3-acetic acid (IAA) production in Klebsiellaby LC-MS/MS and the Salkowski methodBio Protoc.20199e32301:CAS:528:DC%2BC1MXit1Cqtr7E336550167854044
RyuR JPattenC LAromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5J. Bacteriol.2008190720072081:CAS:528:DC%2BD1cXhtlajtLjM187575312580706
LiYLiuBGuoJCongHHeSZhouHZhuFWangQZhangLL-Tryptophan represses persister formation via inhibiting bacterial motility and promoting antibiotics absorptionFuture Microbiol.2019147577711:CAS:528:DC%2BC1MXhsVelsrzP31271063
OhYXuXKimJ YParkJ MMaximizing the utilization of Laminaria japonica as biomass via improvement of alginate lyase activity in a two-phase fermentation systemBiotechnol. J.201510128112881:CAS:528:DC%2BC2MXhtFWnsLjF26098412
WagiSAhmedABacillus spp.: potent microfactories of bacterial IAAPeerJ.20197e7258313723166659656
BotsfordJ LDeMossR DCatabolite repression of tryptophanase in Escherichia coliJ. Bacteriol.19711053033121:CAS:528:DyaE3MXmtFyiug%3D%3D4322348248355
SzkopMBielawskiWA simple method for simultaneous RP-HPLC determination of indolic compounds related to bacterial biosynthesis of indole-3-acetic acidAntonie Van Leeuwenhoek20131036836911:CAS:528:DC%2BC3sXisValsrw%3D23111785
PattenC LBlakneyA J CCoulsonT J DActivity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteriaCrit. Rev. Microbiol.2013393954151:CAS:528:DC%2BC3sXhsFynsbfO22978761
BortolottiPHennartBThieffryCJausionsGFaureEGrandjeanTThepautMDesseinRAllorgeDGueryB PFaureKKipnisEToussaintBGouellecA LTryptophan catabolism in Pseudomonas aeruginosa and potential for inter-kingdom relationshipBMC Microbiol.201616137273920674938989
WooSMoonJ HSungJBaekDShonY JJungG YRecent advances in the utilization of brown macroalgae as feedstock for microbial biorefineryBiotechnol. Bioprocess Eng.2022278798891:CAS:528:DC%2BB38XjtVylt7vI
AhmedMStalL JHasnainSProduction of indole-3-acetic acid by the cyanobacterium Arthrospira platensis strain MMG-9J. Microbiol. Biotechnol.201020125912651:CAS:528:DC%2BC3cXhtlKrtrbO20890089
LimH GKwakD HParkSWooSYangJ-SKangC WKimBNohM HSeoS WJungG YNat. Commun.2019102486311717826554313
Hernández-MontielL GChiquito ContrerasC JMurillo AmadorBVidal HernándezLQuiñones AguilarE EChiquito ContrerasR GEfficiency of two inoculation methods of Pseudomonas putida on growth and yield of tomato plantsJ. Soil Sci. Plant Nutr.20171710031012
EmamiSAlikhaniH APourbabaeiA AEtesamiHSarmadianFMotessharezadehBAssessment of the potential of indole-3-acetic acid producing bacteria to manage chemical fertilizers applicationInt. J. Environ. Res.2019136036111:CAS:528:DC%2BC1MXitFemsrjF
JeyanthiVGaneshPProduction, optimization and characterization of phytohormone indole acetic acid by Pseudomonas fluorescenceInt. J. Pharm. Biol. Sci. Arch.20134514520
GórkaBWieczorekP PSimultaneous determination of nine phytohormones in seaweed and algae extracts by HPLC-PDAJ. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20171057323928499204
EgamberdievaDAlleviation of salt stress by plant growth regulators and IAA producing bacteria in wheatActa Physiol. Plant.2009318618641:CAS:528:DC%2BD1MXnsVWkurY%3D
YangSZhangQGuoJCharkowskiA OGlickB RIbekweA MCookseyD AYangC-HGlobal effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937Appl. Environ. Microbiol.200773107910881:CAS:528:DC%2BD2sXitlyqs7g%3D17189441
SergeevaEHirkalaD L MNelsonL MProduction of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolatesPlant Soil.20072971131:CAS:528:DC%2BD2sXptFegs7Y%3D
JiS-QWangBLuMLiF-LDirect bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphilaBiotechnol. Biofuels.2016981270422104818487
WoodwardA WBartelBAuxin: regulation, action, and interactionAnn. Bot.2005957077351:CAS:528:DC%2BD2MXjvFOrsbs%3D157497534246732
GhoshSSenguptaCMaitiT KBasuP SProduction of 3-indolylacetic acid in root nodules and culture by a Rhizobium species isolated from root nodules of the leguminous pulse Phaseolus mungoFolia Microbiol. (Praha)2008533513551:CAS:528:DC%2BD1cXhtVGgtLzK18759120
ZhangCMaKXingX-HRegulation of hydrogen production by Enterobacter aerogenes by external NADH and NAD+Int. J. Hydrogen Energy200934122612321:CAS:528:DC%2BD1MXht1Gnu7w%3D
HoffartEGrenzSLangeJNitschelRMüllerFSchwentnerAFeithALenfers-LückerMTakorsRBlombachBHigh substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnologyAppl. Environ. Microbiol.201783e01614e016171:CAS:528:DC%2BC1cXpsl2htrk%3D288874175666143
KucukCCevheriCIn vitro antagonism of Rhizobium strains isolated from various legumesJ. Pure Appl. Microbiol.20159503511
BitterTMuirH MA modified uronic acid carbazole reactionAnal. Biochem.196243303341:CAS:528:DyaF3sXnsVyrtw%3D%3D13971270
ColabroyK LBegleyT PTryptophan catabolism: identification and characterization of a new degradative pathwayJ. Bacteriol.2005187786678691:CAS:528:DC%2BD2MXht1Wnu7%2FP162673121280306
BertinYDevalCde la FoyeAMassonLGannonVHarelJMartinCDesvauxMForanoEThe gluconeogenesis pathway is involved in maintenance of enterohaemorrhagic Escherichia coli O157:H7 in bovine intestinal contentPLoS One20149e98367248871874041753
ApineO AJadhavJ POptimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVMJ. Appl. Microbiol.2011110123512441:CAS:528:DC%2BC3MXnt1entrg%3D21332896
MujahidMSasikalaCRamanaC VCarbon catabolite repression-independent and pH-dependent production of indoles by Rubrivivax benzoatilyticus JA2Curr. Microbiol.2013673994051:CAS:528:DC%2BC3sXhtlCgtrnK23666086
OnaOVan ImpeJPrinsenEVanderleydenJGrowth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlledFEMS Microbiol. Lett.20052461251321:CAS:528:DC%2BD2MXjslKgt7w%3D15869971
BangH BChoiI HJangJ HJeongK JEngineering of Escherichia coli for the economic production L-phenylalanine in large-scale bioreactorBiotechnol. Bioprocess Eng.2021264684751:CAS:528:DC%2BB3MXhsVCltLrE
O A Apine (56_CR11) 2011; 110
O Ona (56_CR10) 2005; 246
S Emami (56_CR17) 2019; 13
C K Gutierrez (56_CR28) 2009; 75
O Salcher (56_CR42) 1980; 121
C Zhang (56_CR44) 2009; 34
S Wagi (56_CR15) 2019; 7
Y Bertin (56_CR41) 2014; 9
Y Oh (56_CR2) 2015; 10
B Mohite (56_CR7) 2013; 13
Y Li (56_CR43) 2019; 14
E Hoffart (56_CR26) 2017; 83
K L Colabroy (56_CR34) 2005; 187
R J Ryu (56_CR32) 2008; 190
J L Botsford (56_CR40) 1971; 105
M Mujahid (56_CR18) 2013; 67
T Bitter (56_CR22) 1962; 4
J Wang (56_CR45) 2013; 135
S-Q Ji (56_CR39) 2016; 9
D Egamberdieva (56_CR9) 2009; 31
S Ghosh (56_CR27) 2008; 53
U Bharucha (56_CR13) 2013; 2
S Woo (56_CR4) 2022; 15
B Górka (56_CR25) 2017; 1057
H G Lim (56_CR1) 2019; 10
S Woo (56_CR3) 2022; 27
C Kucuk (56_CR29) 2015; 9
L G Hernández-Montiel (56_CR8) 2017; 17
M Enquist-Newman (56_CR38) 2014; 505
A W Woodward (56_CR5) 2005; 95
Y-G Lee (56_CR16) 2022; 27
D Duca (56_CR6) 2014; 106
B Sasirekha (56_CR19) 2012; 12
V Jeyanthi (56_CR20) 2013; 4
M Szkop (56_CR24) 2013; 103
E Sergeeva (56_CR21) 2007; 297
G Zhang (56_CR37) 2021; 26
S Yang (56_CR31) 2007; 73
H B Bang (56_CR36) 2021; 26
P Bortolotti (56_CR35) 2016; 16
M Ahmed (56_CR14) 2010; 20
C L Patten (56_CR30) 2013; 39
M Chaiharn (56_CR12) 2011; 62
R R Bouknight (56_CR33) 1975; 121
S Gang (56_CR23) 2019; 9
References_xml – reference: WooSMoonJ HSungJBaekDShonY JJungG YRecent advances in the utilization of brown macroalgae as feedstock for microbial biorefineryBiotechnol. Bioprocess Eng.2022278798891:CAS:528:DC%2BB38XjtVylt7vI
– reference: LeeY-GJuYSunLParkSJinY-SKimS RAcetate-rich cellulosic hydrolysates and their bioconversion using yeastsBiotechnol. Bioprocess Eng.2022278908991:CAS:528:DC%2BB38XjtVGrurfM
– reference: EmamiSAlikhaniH APourbabaeiA AEtesamiHSarmadianFMotessharezadehBAssessment of the potential of indole-3-acetic acid producing bacteria to manage chemical fertilizers applicationInt. J. Environ. Res.2019136036111:CAS:528:DC%2BC1MXitFemsrjF
– reference: JiS-QWangBLuMLiF-LDirect bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphilaBiotechnol. Biofuels.2016981270422104818487
– reference: SergeevaEHirkalaD L MNelsonL MProduction of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolatesPlant Soil.20072971131:CAS:528:DC%2BD2sXptFegs7Y%3D
– reference: AhmedMStalL JHasnainSProduction of indole-3-acetic acid by the cyanobacterium Arthrospira platensis strain MMG-9J. Microbiol. Biotechnol.201020125912651:CAS:528:DC%2BC3cXhtlKrtrbO20890089
– reference: JeyanthiVGaneshPProduction, optimization and characterization of phytohormone indole acetic acid by Pseudomonas fluorescenceInt. J. Pharm. Biol. Sci. Arch.20134514520
– reference: BangH BChoiI HJangJ HJeongK JEngineering of Escherichia coli for the economic production L-phenylalanine in large-scale bioreactorBiotechnol. Bioprocess Eng.2021264684751:CAS:528:DC%2BB3MXhsVCltLrE
– reference: WagiSAhmedABacillus spp.: potent microfactories of bacterial IAAPeerJ.20197e7258313723166659656
– reference: LimH GKwakD HParkSWooSYangJ-SKangC WKimBNohM HSeoS WJungG YNat. Commun.2019102486311717826554313
– reference: OhYXuXKimJ YParkJ MMaximizing the utilization of Laminaria japonica as biomass via improvement of alginate lyase activity in a two-phase fermentation systemBiotechnol. J.201510128112881:CAS:528:DC%2BC2MXhtFWnsLjF26098412
– reference: ZhangCMaKXingX-HRegulation of hydrogen production by Enterobacter aerogenes by external NADH and NAD+Int. J. Hydrogen Energy200934122612321:CAS:528:DC%2BD1MXht1Gnu7w%3D
– reference: HoffartEGrenzSLangeJNitschelRMüllerFSchwentnerAFeithALenfers-LückerMTakorsRBlombachBHigh substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnologyAppl. Environ. Microbiol.201783e01614e016171:CAS:528:DC%2BC1cXpsl2htrk%3D288874175666143
– reference: WooSLimH GHanY HParkSNohM HBaekDMoonJ HSeoS WJungG YA Vibrio-based microbial platform for accelerated lignocellulosic sugar conversionBiotechnol. Biofuels. Bioprod.202215581:CAS:528:DC%2BB38XisVCktb7F356144599134653
– reference: WoodwardA WBartelBAuxin: regulation, action, and interactionAnn. Bot.2005957077351:CAS:528:DC%2BD2MXjvFOrsbs%3D157497534246732
– reference: OnaOVan ImpeJPrinsenEVanderleydenJGrowth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlledFEMS Microbiol. Lett.20052461251321:CAS:528:DC%2BD2MXjslKgt7w%3D15869971
– reference: PattenC LBlakneyA J CCoulsonT J DActivity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteriaCrit. Rev. Microbiol.2013393954151:CAS:528:DC%2BC3sXhsFynsbfO22978761
– reference: BertinYDevalCde la FoyeAMassonLGannonVHarelJMartinCDesvauxMForanoEThe gluconeogenesis pathway is involved in maintenance of enterohaemorrhagic Escherichia coli O157:H7 in bovine intestinal contentPLoS One20149e98367248871874041753
– reference: GutierrezC KMatsuiG YLincolnD ELovellC RProduction of the phytohormone indole-3-acetic acid by estuarine species of the genus VibrioAppl. Environ. Microbiol.200975225322581:CAS:528:DC%2BD1MXlsFCiu7Y%3D192184112675210
– reference: KucukCCevheriCIn vitro antagonism of Rhizobium strains isolated from various legumesJ. Pure Appl. Microbiol.20159503511
– reference: WangJKimY MRheeH SLeeM WParkJ MBioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3Bioresour. Technol.20131351992061:CAS:528:DC%2BC38XhslejsL3M23186687
– reference: SasirekhaBShivakumarSSulliaS BStatistical optimization for improved indole-3-acetic acid (iaa) production by Pseudomonas aeruginosa and demonstration of enhanced plant growth promotionJ. Soil Sci. Plant Nutr.201212863873
– reference: RyuR JPattenC LAromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5J. Bacteriol.2008190720072081:CAS:528:DC%2BD1cXhtlajtLjM187575312580706
– reference: BortolottiPHennartBThieffryCJausionsGFaureEGrandjeanTThepautMDesseinRAllorgeDGueryB PFaureKKipnisEToussaintBGouellecA LTryptophan catabolism in Pseudomonas aeruginosa and potential for inter-kingdom relationshipBMC Microbiol.201616137273920674938989
– reference: BotsfordJ LDeMossR DCatabolite repression of tryptophanase in Escherichia coliJ. Bacteriol.19711053033121:CAS:528:DyaE3MXmtFyiug%3D%3D4322348248355
– reference: MohiteBIsolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growthJ. Soil Sci. Plant Nutr.201313638649
– reference: Enquist-NewmanMFaustA M EBravoD DSantosC N SRaisnerR MHanelASarvabhowmanPLeCRegitskyD DCooperS RPeereboomLClarkAMartinezYGoldsmithJChoM YDonohoueP DLuoLLambersonBTamrakarPKimE JVillariJ LGillATripathiS AKaramcheduPParedesC JRajgarhiaVKotlarH KBaileyR BMillerD JOhlerN LSwimmerCYoshikuniYEfficient ethanol production from brown macroalgae sugars by a synthetic yeast platformNature20145052392431:CAS:528:DC%2BC2cXltVSrsA%3D%3D24291791
– reference: GórkaBWieczorekP PSimultaneous determination of nine phytohormones in seaweed and algae extracts by HPLC-PDAJ. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20171057323928499204
– reference: ColabroyK LBegleyT PTryptophan catabolism: identification and characterization of a new degradative pathwayJ. Bacteriol.2005187786678691:CAS:528:DC%2BD2MXht1Wnu7%2FP162673121280306
– reference: DucaDLorvJPattenC LRoseDGlickB RIndole-3-acetic acid in plant–microbe interactionsAntonie Van Leeuwenhoek2014106851251:CAS:528:DC%2BC2cXhtVKhsb3I24445491
– reference: LiYLiuBGuoJCongHHeSZhouHZhuFWangQZhangLL-Tryptophan represses persister formation via inhibiting bacterial motility and promoting antibiotics absorptionFuture Microbiol.2019147577711:CAS:528:DC%2BC1MXhsVelsrzP31271063
– reference: GangSSharmaSSarafMBuckMSchumacherJAnalysis of indole-3-acetic acid (IAA) production in Klebsiellaby LC-MS/MS and the Salkowski methodBio Protoc.20199e32301:CAS:528:DC%2BC1MXit1Cqtr7E336550167854044
– reference: SalcherOLingensFMetabolism of tryptophan by Pseudomonas aureofaciens and its relationship to pyrrolnitrin biosynthesisJ. Gen. Microbiol.19801214654711:CAS:528:DyaL3MXkt1SqurY%3D7264603
– reference: SzkopMBielawskiWA simple method for simultaneous RP-HPLC determination of indolic compounds related to bacterial biosynthesis of indole-3-acetic acidAntonie Van Leeuwenhoek20131036836911:CAS:528:DC%2BC3sXisValsrw%3D23111785
– reference: BouknightR RSadoffH LTryptophan catabolism in Bacillus megateriumJ. Bacteriol.197512170761:CAS:528:DyaE2MXot1OmsQ%3D%3D803956285614
– reference: EgamberdievaDAlleviation of salt stress by plant growth regulators and IAA producing bacteria in wheatActa Physiol. Plant.2009318618641:CAS:528:DC%2BD1MXnsVWkurY%3D
– reference: GhoshSSenguptaCMaitiT KBasuP SProduction of 3-indolylacetic acid in root nodules and culture by a Rhizobium species isolated from root nodules of the leguminous pulse Phaseolus mungoFolia Microbiol. (Praha)2008533513551:CAS:528:DC%2BD1cXhtVGgtLzK18759120
– reference: BharuchaUPatelKTrivediU BOptimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra)Agric. Res.201322152211:CAS:528:DC%2BC3sXhsVSitbbI
– reference: MujahidMSasikalaCRamanaC VCarbon catabolite repression-independent and pH-dependent production of indoles by Rubrivivax benzoatilyticus JA2Curr. Microbiol.2013673994051:CAS:528:DC%2BC3sXhtlCgtrnK23666086
– reference: BitterTMuirH MA modified uronic acid carbazole reactionAnal. Biochem.196243303341:CAS:528:DyaF3sXnsVyrtw%3D%3D13971270
– reference: ApineO AJadhavJ POptimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVMJ. Appl. Microbiol.2011110123512441:CAS:528:DC%2BC3MXnt1entrg%3D21332896
– reference: ZhangGRenXLiangXWangYFengDZhangYXianMZouHImproving the microbial production of amino acids: from conventional approaches to recent trendsBiotechnol. Bioprocess Eng.2021267087271:CAS:528:DC%2BB3MXisVCgsr3N
– reference: ChaiharnMLumyongSScreening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growthCurr. Microbiol.2011621731811:CAS:528:DC%2BC3cXhsF2gt7%2FP20552360
– reference: YangSZhangQGuoJCharkowskiA OGlickB RIbekweA MCookseyD AYangC-HGlobal effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937Appl. Environ. Microbiol.200773107910881:CAS:528:DC%2BD2sXitlyqs7g%3D17189441
– reference: Hernández-MontielL GChiquito ContrerasC JMurillo AmadorBVidal HernándezLQuiñones AguilarE EChiquito ContrerasR GEfficiency of two inoculation methods of Pseudomonas putida on growth and yield of tomato plantsJ. Soil Sci. Plant Nutr.20171710031012
– volume: 20
  start-page: 1259
  year: 2010
  ident: 56_CR14
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1004.04033
– volume: 4
  start-page: 514
  year: 2013
  ident: 56_CR20
  publication-title: Int. J. Pharm. Biol. Sci. Arch.
– volume: 62
  start-page: 173
  year: 2011
  ident: 56_CR12
  publication-title: Curr. Microbiol.
  doi: 10.1007/s00284-010-9674-6
– volume: 53
  start-page: 351
  year: 2008
  ident: 56_CR27
  publication-title: Folia Microbiol. (Praha)
  doi: 10.1007/s12223-008-0054-6
– volume: 95
  start-page: 707
  year: 2005
  ident: 56_CR5
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mci083
– volume: 106
  start-page: 85
  year: 2014
  ident: 56_CR6
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/s10482-013-0095-y
– volume: 17
  start-page: 1003
  year: 2017
  ident: 56_CR8
  publication-title: J. Soil Sci. Plant Nutr.
  doi: 10.4067/S0718-95162017000400012
– volume: 13
  start-page: 638
  year: 2013
  ident: 56_CR7
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 9
  start-page: e3230
  year: 2019
  ident: 56_CR23
  publication-title: Bio Protoc.
  doi: 10.21769/BioProtoc.3230
– volume: 14
  start-page: 757
  year: 2019
  ident: 56_CR43
  publication-title: Future Microbiol.
  doi: 10.2217/fmb-2019-0051
– volume: 297
  start-page: 1
  year: 2007
  ident: 56_CR21
  publication-title: Plant Soil.
  doi: 10.1007/s11104-007-9314-5
– volume: 27
  start-page: 890
  year: 2022
  ident: 56_CR16
  publication-title: Biotechnol. Bioprocess Eng.
  doi: 10.1007/s12257-022-0217-3
– volume: 16
  start-page: 137
  year: 2016
  ident: 56_CR35
  publication-title: BMC Microbiol.
  doi: 10.1186/s12866-016-0756-x
– volume: 505
  start-page: 239
  year: 2014
  ident: 56_CR38
  publication-title: Nature
  doi: 10.1038/nature12771
– volume: 105
  start-page: 303
  year: 1971
  ident: 56_CR40
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.105.1.303-312.1971
– volume: 9
  start-page: 503
  year: 2015
  ident: 56_CR29
  publication-title: J. Pure Appl. Microbiol.
– volume: 4
  start-page: 330
  year: 1962
  ident: 56_CR22
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(62)90095-7
– volume: 1057
  start-page: 32
  year: 2017
  ident: 56_CR25
  publication-title: J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.
  doi: 10.1016/j.jchromb.2017.04.048
– volume: 7
  start-page: e7258
  year: 2019
  ident: 56_CR15
  publication-title: PeerJ.
  doi: 10.7717/peerj.7258
– volume: 12
  start-page: 863
  year: 2012
  ident: 56_CR19
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 187
  start-page: 7866
  year: 2005
  ident: 56_CR34
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.187.22.7866-7869.2005
– volume: 135
  start-page: 199
  year: 2013
  ident: 56_CR45
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.10.012
– volume: 190
  start-page: 7200
  year: 2008
  ident: 56_CR32
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00804-08
– volume: 121
  start-page: 70
  year: 1975
  ident: 56_CR33
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.121.1.70-76.1975
– volume: 75
  start-page: 2253
  year: 2009
  ident: 56_CR28
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02072-08
– volume: 10
  start-page: 1281
  year: 2015
  ident: 56_CR2
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201400860
– volume: 246
  start-page: 125
  year: 2005
  ident: 56_CR10
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1016/j.femsle.2005.03.048
– volume: 26
  start-page: 708
  year: 2021
  ident: 56_CR37
  publication-title: Biotechnol. Bioprocess Eng.
  doi: 10.1007/s12257-020-0390-1
– volume: 13
  start-page: 603
  year: 2019
  ident: 56_CR17
  publication-title: Int. J. Environ. Res.
  doi: 10.1007/s41742-019-00197-6
– volume: 26
  start-page: 468
  year: 2021
  ident: 56_CR36
  publication-title: Biotechnol. Bioprocess Eng.
  doi: 10.1007/s12257-020-0313-1
– volume: 83
  start-page: e01614
  year: 2017
  ident: 56_CR26
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01614-17
– volume: 73
  start-page: 1079
  year: 2007
  ident: 56_CR31
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01770-06
– volume: 9
  start-page: 81
  year: 2016
  ident: 56_CR39
  publication-title: Biotechnol. Biofuels.
  doi: 10.1186/s13068-016-0494-1
– volume: 27
  start-page: 879
  year: 2022
  ident: 56_CR3
  publication-title: Biotechnol. Bioprocess Eng.
  doi: 10.1007/s12257-022-0301-8
– volume: 121
  start-page: 465
  year: 1980
  ident: 56_CR42
  publication-title: J. Gen. Microbiol.
– volume: 39
  start-page: 395
  year: 2013
  ident: 56_CR30
  publication-title: Crit. Rev. Microbiol.
  doi: 10.3109/1040841X.2012.716819
– volume: 34
  start-page: 1226
  year: 2009
  ident: 56_CR44
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.11.070
– volume: 9
  start-page: e98367
  year: 2014
  ident: 56_CR41
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0098367
– volume: 10
  start-page: 2486
  year: 2019
  ident: 56_CR1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10371-1
– volume: 31
  start-page: 861
  year: 2009
  ident: 56_CR9
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-009-0297-0
– volume: 67
  start-page: 399
  year: 2013
  ident: 56_CR18
  publication-title: Curr. Microbiol.
  doi: 10.1007/s00284-013-0378-6
– volume: 2
  start-page: 215
  year: 2013
  ident: 56_CR13
  publication-title: Agric. Res.
  doi: 10.1007/s40003-013-0065-7
– volume: 110
  start-page: 1235
  year: 2011
  ident: 56_CR11
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2011.04976.x
– volume: 15
  start-page: 58
  year: 2022
  ident: 56_CR4
  publication-title: Biotechnol. Biofuels. Bioprod.
  doi: 10.1186/s13068-022-02157-3
– volume: 103
  start-page: 683
  year: 2013
  ident: 56_CR24
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/s10482-012-9838-4
SSID ssj0047888
Score 2.3716915
Snippet The production of indole-3-acetic acid (IAA) by bacteria has attracted considerable attention in plant studies due to its significant role as a plant growth...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 695
SubjectTerms Acetic acid
Acid production
Algae
Alginates
Alginic acid
Bacteria
Biosynthesis
Biotechnology
Carbon
Carbon sources
Chemistry
Chemistry and Materials Science
glucose
Growth regulators
indole acetic acid
Indoleacetic acid
Industrial and Production Engineering
Mannitol
Microorganisms
Nicotinamide adenine dinucleotide
Plant growth
Research Paper
Tryptophan
Vibrio
생물공학
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dTxQxEJ8IvOgDUdC4iKZGnjTV3ba0XV_MhUjARMKDmHtrum0XCGT3vDsS_O-d2du980zkaZP9zsy08_0bgAOjylxEE3lto-TKqor7skrU-uRlEiIWkQL638_0yYX6Nj4c9wG3WV9WOeyJ3UYd20Ax8k_CatxrS1SIXya_OE2NouxqP0JjA7YIuoxKusx46XARMnzXCocmBkdHTAxZza51DgXZcNRYnNAw-f2aXtpopvWayflPlrRTPsdPYbu3GtloweZn8Cg1O_DkLyzBXXCnDYEzccl9oMZENgrXkZ0vAF2R-IwaSdjoluYwzBOrfrOfVO3fstnkI4tXl59ZVwzaRdmZbyI7Wodyfg4Xx19_HJ3wfnoCD9KqOde-MKkw0epDn0cpi6R1KE1uE6rwKnpRePS_dBJSiVSjHjd4At0HPIoa7QL5AjabtkkvgdlcqbpIhCWvVFC6EuiPlzKEZGPUpckgH2jnQg8tThMubt0KFJnI7ZDcjsjt7jN4v3xkssDVeOjmd8gQdxOuHaFh0_GydTdThzb_qSNIQPT7RAb7A8NcvxBnbiU2GbxdXsYlRHkR36T2buYk7vroZhmrMvgwMHr1iv_-1t7DH3wFj0UnX1QtuA-b8-ldeo0WzLx604npH1Zu6QI
  priority: 102
  providerName: ProQuest
Title Indole-3-acetic Acid Production from Alginate by Vibrio sp. dhg: Physiology and Characteristics
URI https://link.springer.com/article/10.1007/s12257-023-0056-x
https://www.proquest.com/docview/2863629710
https://www.proquest.com/docview/3153182784
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003012116
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Biotechnology and Bioprocess Engineering, 2023, 28(4), , pp.695-703
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6x7QF4mGCACBuVETyBjBLbjR3e0qrdBqKaEEXlyUpsZ0yb0qntJPj33KXJShEg8ZKTEseK7i6-O9_dZ4BXWmWx8NrzynjJlVElL7IyUOtTIYMQPvG0of9xkp5M1ftZf9b2cS-7avcuJdms1JtmN1Q9zdHGcMKv5Og47vUpdEclnoq8W34JDr7pf0O_gmP0JbpU5p-m2DJGO_Wi2vIzf0uNNhZn_AD2W1eR5WvZPoQ7oT6Au8PuhLYDuP8LmOAjsKc1oTNxyQtHnYksdxeena0RXZH7jDpJWH5FBzGsAit_sC9U7j9ny-u3zH87f8eaatBmm50VtWfDbSznxzAdjz4PT3h7fAJ30qgVT4tEh0R7k_aL2EuZhDR1mY5NQBte-kIkBQZgaRBSiVChIdd4A-MHpKJCx0A-gd16XoenwEysVJUEApNXyqm0FBiQZ9K5YLxPMx1B3PHRuhZbnI64uLIbVGRivUXWW2K9_R7B69tXrtfAGv8a_BKFYy_dhSU4bKLnc3u5sOj0n1rCBMTAT0Rw1AnPtn_i0gqToo3O0JGK4MXtYxQUJUaKOsxvllbiso9xljYqgjed0DdT_PWznv3X6EO4JxrVo-rBI9hdLW7Cc_RoVmUPdvRM49WMj3uwl48HgwnR468fRkgHo8nZp16j5T8BRfvwRg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615QAcEOUhUgo1Ai4gl8R2YwepQqvCsksf4tCi3kxiO23VKll2t6L9U_zGzmQ3XRaJ3nqylIcTzcMz4_F8A_BGqywWXnteGi-5MqrgeVYEKn3KZRDCJ5429Hf30t6B-na4cbgAf9paGDpW2a6JzULta0d75B-ESXGtzdAgfhr84tQ1irKrbQuNiVhsh8vfGLKNNvufkb9vheh-2d_q8WlXAe6kUWOe5okOifYm3chjL2US0tRlOjYBTVvhc5HkGJekQUglQon2TeMFdKtxFCXaS4nzLsIdJWVGGmW6X9uVn5Dom9I7dGk4Bn6izaI2pXqoOJqjheSEvskv5uzgYjUs51zcf7KyjbHrPoQHUy-VdSZitQwLoXoE9__CLnwMtl8RGBSXPHdUCMk67sSz7xMAWWQ2o8IV1jmjvg_jwIpL9oOqC2o2Gqwzf3z0kTWHT5tdfZZXnm3NQ0c_gYNboetTWKrqKjwDZmKlyiQQdr1STqWFwPg_k84F432a6QjilnbWTaHMqaPGmZ2BMBO5LZLbErntRQTvrl8ZTHA8bnr4NTLEnroTS-jbNB7V9nRoMcboW4IgxDhTRLDaMsxOFX9kZ2Iawavr26iylIfJq1Cfj6xEK4NhnTYqgvcto2dT_Pe3Vm7-4Brc7e3v7tid_t72c7gnGlmjk4qrsDQenocX6D2Ni5eNyDL4eds6cgUqTyLz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tQ0LwgPgUgQFGwAvILLHdOEFCqNqoVgbTHhjqm3FsZ0ybktJ2YvvX-Ou4S5OWIrG3PVnKhxPdh-_O5_sdwEut8lh47XmZeclVpgpu8yJQ6ZOVQQifeNrQ_7Kf7h6qT6PeaA1-d7UwdKyyWxObhdrXjvbIt0SW4lqbo0HcKttjEQc7gw_jn5w6SFGmtWunMReRvXDxC8O36fvhDvL6lRCDj1-3d3nbYYA7makZT22iQ6J9lvZs7KVMQpq6XMdZQDNXeCsSizFKGoRUIpRo6zReQBcbR1Gi7ZQ47zpc07KXkI7p0SLYI1T6pgwP3RuOQaDoMqpN2R4qkeZoLTkhcfLzFZu4Xk3KFXf3nwxtY_gGt-FW67Gy_lzE7sBaqO7Czb9wDO-BGVYEDMUlt46KIlnfHXt2MAeTRcYzKmJh_VPqATELrLhg36jSoGbT8Vvmfxy9Y81B1GaHn9nKs-1VGOn7cHgldH0AG1VdhYfAslipMgmEY6-UU2khQoEuinMh8z7NdQRxRzvjWlhz6q5xapaAzERug-Q2RG5zHsHrxSvjOabHZQ-_QIaYE3dsCImbxqPanEwMxhtDQ3CEGHOKCDY7hpl2EZiapchG8HxxG9WXcjK2CvXZ1Ei0OBji6UxF8KZj9HKK__7Wo8s_-Ayuo3aYz8P9vcdwQzSiRocWN2FjNjkLT9CRmhVPG4ll8P2qVeQP8P0nIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indole-3-acetic+Acid+Production+from+Alginate+by+Vibrio+sp.+dhg%3A+Physiology+and+Characteristics&rft.jtitle=Biotechnology+and+bioprocess+engineering&rft.au=Shin%2C+Hyo+Jeong&rft.au=Woo%2C+Sunghwa&rft.au=Jung%2C+Gyoo+Yeol&rft.au=Park%2C+Jong+Moon&rft.date=2023-08-01&rft.issn=1226-8372&rft.volume=28&rft.issue=4+p.695-703&rft.spage=695&rft.epage=703&rft_id=info:doi/10.1007%2Fs12257-023-0056-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-8372&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-8372&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-8372&client=summon