Indole-3-acetic Acid Production from Alginate by Vibrio sp. dhg: Physiology and Characteristics
The production of indole-3-acetic acid (IAA) by bacteria has attracted considerable attention in plant studies due to its significant role as a plant growth regulator. In this study, it was confirmed that Vibrio sp. dhg, a novel microbial platform capable of assimilating alginate, can naturally synt...
Saved in:
Published in | Biotechnology and bioprocess engineering Vol. 28; no. 4; pp. 695 - 703 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Society for Biotechnology and Bioengineering
01.08.2023
Springer Nature B.V 한국생물공학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1226-8372 1976-3816 |
DOI | 10.1007/s12257-023-0056-x |
Cover
Loading…
Abstract | The production of indole-3-acetic acid (IAA) by bacteria has attracted considerable attention in plant studies due to its significant role as a plant growth regulator. In this study, it was confirmed that
Vibrio
sp. dhg, a novel microbial platform capable of assimilating alginate, can naturally synthesize IAA. The effects of L-tryptophan and the carbon sources obtained from brown algae (glucose, mannitol, and alginate) were also examined to characterize the IAA biosynthesis in
Vibrio
sp. dhg. The highest IAA production (9.32 ± 0.25 mg/L) was observed in the alginate medium containing 0.8 g/L of L-tryptophan. Interestingly, alginate was found to be a favorable option for IAA production due to the rapid uptake of L-tryptophan during the exponential phase. By adding external NADH, this study demonstrated that the low net reducing equivalents in the alginate medium were linked to this phenomenon. This study is the first to provide alginate as the sole carbon source for IAA production and to propose that the oxidoreduction potentials of the carbon source can affect bacterial IAA biosynthesis. |
---|---|
AbstractList | The production of indole-3-acetic acid (IAA) by bacteria has attracted considerable attention in plant studies due to its significant role as a plant growth regulator. In this study, it was confirmed that
Vibrio
sp. dhg, a novel microbial platform capable of assimilating alginate, can naturally synthesize IAA. The effects of L-tryptophan and the carbon sources obtained from brown algae (glucose, mannitol, and alginate) were also examined to characterize the IAA biosynthesis in
Vibrio
sp. dhg. The highest IAA production (9.32 ± 0.25 mg/L) was observed in the alginate medium containing 0.8 g/L of L-tryptophan. Interestingly, alginate was found to be a favorable option for IAA production due to the rapid uptake of L-tryptophan during the exponential phase. By adding external NADH, this study demonstrated that the low net reducing equivalents in the alginate medium were linked to this phenomenon. This study is the first to provide alginate as the sole carbon source for IAA production and to propose that the oxidoreduction potentials of the carbon source can affect bacterial IAA biosynthesis. The production of indole-3-acetic acid (IAA) by bacteria has attracted considerable attention in plant studies due to its significant role as a plant growth regulator. In this study, it was confirmed that Vibrio sp. dhg, a novel microbial platform capable of assimilating alginate, can naturally synthesize IAA. The effects of L-tryptophan and the carbon sources obtained from brown algae (glucose, mannitol, and alginate) were also examined to characterize the IAA biosynthesis in Vibrio sp. dhg. The highest IAA production (9.32 ± 0.25 mg/L) was observed in the alginate medium containing 0.8 g/L of L-tryptophan. Interestingly, alginate was found to be a favorable option for IAA production due to the rapid uptake of L-tryptophan during the exponential phase. By adding external NADH, this study demonstrated that the low net reducing equivalents in the alginate medium were linked to this phenomenon. This study is the first to provide alginate as the sole carbon source for IAA production and to propose that the oxidoreduction potentials of the carbon source can affect bacterial IAA biosynthesis. The production of indole-3-acetic acid (IAA) by bacteria has attracted considerable attention in plant studies due to its significant role as a plant growth regulator. In this study, it was confirmed that Vibrio sp. dhg, a novel microbial platform capable of assimilating alginate, can naturally synthesize IAA. The effects of L-tryptophan and the carbon sources obtained from brown algae (glucose, mannitol, and alginate) were also examined to characterize the IAA biosynthesis in Vibrio sp. dhg. The highest IAA production (9.32 ± 0.25 mg/L) was observed in the alginate medium containing 0.8 g/L of L-tryptophan. Interestingly, alginate was found to be a favorable option for IAA production due to the rapid uptake of L-tryptophan during the exponential phase. By adding external NADH, this study demonstrated that the low net reducing equivalents in the alginate medium were linked to this phenomenon. This study is the first to provide alginate as the sole carbon source for IAA production and to propose that the oxidoreduction potentials of the carbon source can affect bacterial IAA biosynthesis. KCI Citation Count: 1 |
Author | Woo, Sunghwa Shin, Hyo Jeong Park, Jong Moon Jung, Gyoo Yeol |
Author_xml | – sequence: 1 givenname: Hyo Jeong surname: Shin fullname: Shin, Hyo Jeong organization: Department of Chemical Engineering, Pohang University of Science and Technology – sequence: 2 givenname: Sunghwa surname: Woo fullname: Woo, Sunghwa organization: Department of Chemical Engineering, Pohang University of Science and Technology – sequence: 3 givenname: Gyoo Yeol surname: Jung fullname: Jung, Gyoo Yeol email: gyjung@postech.ac.kr organization: Department of Chemical Engineering, Pohang University of Science and Technology, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology – sequence: 4 givenname: Jong Moon surname: Park fullname: Park, Jong Moon email: jmpark@postech.ac.kr organization: Department of Chemical Engineering, Pohang University of Science and Technology, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003012116$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kUFrGzEQhUVJoHbSH9CboJdSUCqNdiW5N2PaxBBICEmuQtZq17LXkiutIf73kbOFQqA9vWH43sxIb4rOQgwOoc-MXjFK5ffMAGpJKHBCaS3Iywc0YTMpCFdMnJUaQBDFJXxE05w3lFZSKTVBehma2DvCibFu8BbPrW_wfYrNwQ4-BtymuMPzvvPBDA6vjvjZr5KPOO-vcLPufuD79TH72MfuiE1o8GJtkrGDSz6XcfkSnbemz-7TH71AT79-Pi5uyO3d9XIxvyWWq2ogwjDpmGyUqA1tOGdOCDuTVDkq2KoxwAwFIRzwClxbsVqWhpB1UWgVUH6Bvo1zQ2r11nodjX_TLupt0vOHx6VmlAMoCQX-OsL7FH8fXB70zmfr-t4EFw9Zc1ZzpkCqqqBf3qGbeEihPEWDElzATLLTdjlSNsWck2u19YM5_d-QjO_LZn1KSY8p6ZKSPqWkX4qTvXPuk9-ZdPyvB0ZPLmzoXPp7079Nr31Bo7U |
CitedBy_id | crossref_primary_10_1016_j_bioflm_2023_100165 crossref_primary_10_3390_ijms26062749 crossref_primary_10_1016_j_biortech_2024_130988 crossref_primary_10_3389_fcimb_2024_1340910 crossref_primary_10_1007_s12257_023_0206_1 crossref_primary_10_1016_j_ymben_2024_11_001 crossref_primary_10_1016_j_micres_2024_127881 crossref_primary_10_1007_s12257_024_00022_8 crossref_primary_10_1007_s12257_024_00023_7 |
Cites_doi | 10.4014/jmb.1004.04033 10.1007/s00284-010-9674-6 10.1007/s12223-008-0054-6 10.1093/aob/mci083 10.1007/s10482-013-0095-y 10.4067/S0718-95162017000400012 10.21769/BioProtoc.3230 10.2217/fmb-2019-0051 10.1007/s11104-007-9314-5 10.1007/s12257-022-0217-3 10.1186/s12866-016-0756-x 10.1038/nature12771 10.1128/jb.105.1.303-312.1971 10.1016/0003-2697(62)90095-7 10.1016/j.jchromb.2017.04.048 10.7717/peerj.7258 10.1128/JB.187.22.7866-7869.2005 10.1016/j.biortech.2012.10.012 10.1128/JB.00804-08 10.1128/jb.121.1.70-76.1975 10.1128/AEM.02072-08 10.1002/biot.201400860 10.1016/j.femsle.2005.03.048 10.1007/s12257-020-0390-1 10.1007/s41742-019-00197-6 10.1007/s12257-020-0313-1 10.1128/AEM.01614-17 10.1128/AEM.01770-06 10.1186/s13068-016-0494-1 10.1007/s12257-022-0301-8 10.3109/1040841X.2012.716819 10.1016/j.ijhydene.2008.11.070 10.1371/journal.pone.0098367 10.1038/s41467-019-10371-1 10.1007/s11738-009-0297-0 10.1007/s00284-013-0378-6 10.1007/s40003-013-0065-7 10.1111/j.1365-2672.2011.04976.x 10.1186/s13068-022-02157-3 10.1007/s10482-012-9838-4 |
ContentType | Journal Article |
Copyright | The Korean Society for Biotechnology and Bioengineering and Springer 2023 The Korean Society for Biotechnology and Bioengineering and Springer 2023. |
Copyright_xml | – notice: The Korean Society for Biotechnology and Bioengineering and Springer 2023 – notice: The Korean Society for Biotechnology and Bioengineering and Springer 2023. |
DBID | AAYXX CITATION 3V. 7QO 7QP 7T7 7WY 7WZ 7X7 7XB 87Z 88A 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- L6V LK8 M0C M0S M2P M7P M7S P5Z P62 P64 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U 7S9 L.6 ACYCR |
DOI | 10.1007/s12257-023-0056-x |
DatabaseName | CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Health & Medical Collection (Alumni) Science Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic AGRICOLA AGRICOLA - Academic Korean Citation Index |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1976-3816 |
EndPage | 703 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10322872 10_1007_s12257_023_0056_x |
GroupedDBID | --- -4Y -58 -5G -BR -EM -Y2 -~C .86 .UV .VR 06C 06D 0R~ 0VY 1N0 203 23N 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 3V. 4.4 406 408 40D 40E 53G 5GY 5VS 6NX 7WY 7X7 88A 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8UJ 95- 95. 95~ 96X 9ZL A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO E3Z EBD EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ K60 K6~ KOV KVFHK L6V LK8 LLZTM M0C M0L M2P M4Y M7P M7S MA- ML0 MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OK1 P19 P2P P62 P9N PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOR QOS R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TUC TUS U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z7U Z7V Z7W Z8Q ZMTXR ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7QO 7QP 7T7 7XB 8FD 8FK ABRTQ C1K FR3 K9. L.- P64 PKEHL PQEST PQGLB PQUKI Q9U 7S9 L.6 AABYN AAEOY AAFGU AAGCJ AAUCO ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AJGSW AKQUC ESTFP SQXTU UNUBA |
ID | FETCH-LOGICAL-c384t-6a17e17d865a0d331e66c9708e061bda21a0266e2342ef41571a06755712f8203 |
IEDL.DBID | U2A |
ISSN | 1226-8372 |
IngestDate | Wed May 08 03:11:38 EDT 2024 Mon Jul 21 22:46:21 EDT 2025 Fri Jul 25 19:10:17 EDT 2025 Tue Jul 01 02:05:45 EDT 2025 Thu Apr 24 22:51:20 EDT 2025 Fri Feb 21 02:42:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | alginate indole-3-acetic acid (IAA) L-tryptophan |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c384t-6a17e17d865a0d331e66c9708e061bda21a0266e2342ef41571a06755712f8203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2863629710 |
PQPubID | 54768 |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10322872 proquest_miscellaneous_3153182784 proquest_journals_2863629710 crossref_citationtrail_10_1007_s12257_023_0056_x crossref_primary_10_1007_s12257_023_0056_x springer_journals_10_1007_s12257_023_0056_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230800 2023-08-00 20230801 2023-08 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 8 year: 2023 text: 20230800 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Dordrecht |
PublicationTitle | Biotechnology and bioprocess engineering |
PublicationTitleAbbrev | Biotechnol Bioproc E |
PublicationYear | 2023 |
Publisher | The Korean Society for Biotechnology and Bioengineering Springer Nature B.V 한국생물공학회 |
Publisher_xml | – name: The Korean Society for Biotechnology and Bioengineering – name: Springer Nature B.V – name: 한국생물공학회 |
References | WangJKimY MRheeH SLeeM WParkJ MBioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3Bioresour. Technol.20131351992061:CAS:528:DC%2BC38XhslejsL3M23186687 BouknightR RSadoffH LTryptophan catabolism in Bacillus megateriumJ. Bacteriol.197512170761:CAS:528:DyaE2MXot1OmsQ%3D%3D803956285614 DucaDLorvJPattenC LRoseDGlickB RIndole-3-acetic acid in plant–microbe interactionsAntonie Van Leeuwenhoek2014106851251:CAS:528:DC%2BC2cXhtVKhsb3I24445491 MohiteBIsolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growthJ. Soil Sci. Plant Nutr.201313638649 Enquist-NewmanMFaustA M EBravoD DSantosC N SRaisnerR MHanelASarvabhowmanPLeCRegitskyD DCooperS RPeereboomLClarkAMartinezYGoldsmithJChoM YDonohoueP DLuoLLambersonBTamrakarPKimE JVillariJ LGillATripathiS AKaramcheduPParedesC JRajgarhiaVKotlarH KBaileyR BMillerD JOhlerN LSwimmerCYoshikuniYEfficient ethanol production from brown macroalgae sugars by a synthetic yeast platformNature20145052392431:CAS:528:DC%2BC2cXltVSrsA%3D%3D24291791 ZhangGRenXLiangXWangYFengDZhangYXianMZouHImproving the microbial production of amino acids: from conventional approaches to recent trendsBiotechnol. Bioprocess Eng.2021267087271:CAS:528:DC%2BB3MXisVCgsr3N BharuchaUPatelKTrivediU BOptimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra)Agric. Res.201322152211:CAS:528:DC%2BC3sXhsVSitbbI SasirekhaBShivakumarSSulliaS BStatistical optimization for improved indole-3-acetic acid (iaa) production by Pseudomonas aeruginosa and demonstration of enhanced plant growth promotionJ. Soil Sci. Plant Nutr.201212863873 GutierrezC KMatsuiG YLincolnD ELovellC RProduction of the phytohormone indole-3-acetic acid by estuarine species of the genus VibrioAppl. Environ. Microbiol.200975225322581:CAS:528:DC%2BD1MXlsFCiu7Y%3D192184112675210 SalcherOLingensFMetabolism of tryptophan by Pseudomonas aureofaciens and its relationship to pyrrolnitrin biosynthesisJ. Gen. Microbiol.19801214654711:CAS:528:DyaL3MXkt1SqurY%3D7264603 WooSLimH GHanY HParkSNohM HBaekDMoonJ HSeoS WJungG YA Vibrio-based microbial platform for accelerated lignocellulosic sugar conversionBiotechnol. Biofuels. Bioprod.202215581:CAS:528:DC%2BB38XisVCktb7F356144599134653 LeeY-GJuYSunLParkSJinY-SKimS RAcetate-rich cellulosic hydrolysates and their bioconversion using yeastsBiotechnol. Bioprocess Eng.2022278908991:CAS:528:DC%2BB38XjtVGrurfM ChaiharnMLumyongSScreening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growthCurr. Microbiol.2011621731811:CAS:528:DC%2BC3cXhsF2gt7%2FP20552360 GangSSharmaSSarafMBuckMSchumacherJAnalysis of indole-3-acetic acid (IAA) production in Klebsiellaby LC-MS/MS and the Salkowski methodBio Protoc.20199e32301:CAS:528:DC%2BC1MXit1Cqtr7E336550167854044 RyuR JPattenC LAromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5J. Bacteriol.2008190720072081:CAS:528:DC%2BD1cXhtlajtLjM187575312580706 LiYLiuBGuoJCongHHeSZhouHZhuFWangQZhangLL-Tryptophan represses persister formation via inhibiting bacterial motility and promoting antibiotics absorptionFuture Microbiol.2019147577711:CAS:528:DC%2BC1MXhsVelsrzP31271063 OhYXuXKimJ YParkJ MMaximizing the utilization of Laminaria japonica as biomass via improvement of alginate lyase activity in a two-phase fermentation systemBiotechnol. J.201510128112881:CAS:528:DC%2BC2MXhtFWnsLjF26098412 WagiSAhmedABacillus spp.: potent microfactories of bacterial IAAPeerJ.20197e7258313723166659656 BotsfordJ LDeMossR DCatabolite repression of tryptophanase in Escherichia coliJ. Bacteriol.19711053033121:CAS:528:DyaE3MXmtFyiug%3D%3D4322348248355 SzkopMBielawskiWA simple method for simultaneous RP-HPLC determination of indolic compounds related to bacterial biosynthesis of indole-3-acetic acidAntonie Van Leeuwenhoek20131036836911:CAS:528:DC%2BC3sXisValsrw%3D23111785 PattenC LBlakneyA J CCoulsonT J DActivity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteriaCrit. Rev. Microbiol.2013393954151:CAS:528:DC%2BC3sXhsFynsbfO22978761 BortolottiPHennartBThieffryCJausionsGFaureEGrandjeanTThepautMDesseinRAllorgeDGueryB PFaureKKipnisEToussaintBGouellecA LTryptophan catabolism in Pseudomonas aeruginosa and potential for inter-kingdom relationshipBMC Microbiol.201616137273920674938989 WooSMoonJ HSungJBaekDShonY JJungG YRecent advances in the utilization of brown macroalgae as feedstock for microbial biorefineryBiotechnol. Bioprocess Eng.2022278798891:CAS:528:DC%2BB38XjtVylt7vI AhmedMStalL JHasnainSProduction of indole-3-acetic acid by the cyanobacterium Arthrospira platensis strain MMG-9J. Microbiol. Biotechnol.201020125912651:CAS:528:DC%2BC3cXhtlKrtrbO20890089 LimH GKwakD HParkSWooSYangJ-SKangC WKimBNohM HSeoS WJungG YNat. Commun.2019102486311717826554313 Hernández-MontielL GChiquito ContrerasC JMurillo AmadorBVidal HernándezLQuiñones AguilarE EChiquito ContrerasR GEfficiency of two inoculation methods of Pseudomonas putida on growth and yield of tomato plantsJ. Soil Sci. Plant Nutr.20171710031012 EmamiSAlikhaniH APourbabaeiA AEtesamiHSarmadianFMotessharezadehBAssessment of the potential of indole-3-acetic acid producing bacteria to manage chemical fertilizers applicationInt. J. Environ. Res.2019136036111:CAS:528:DC%2BC1MXitFemsrjF JeyanthiVGaneshPProduction, optimization and characterization of phytohormone indole acetic acid by Pseudomonas fluorescenceInt. J. Pharm. Biol. Sci. Arch.20134514520 GórkaBWieczorekP PSimultaneous determination of nine phytohormones in seaweed and algae extracts by HPLC-PDAJ. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20171057323928499204 EgamberdievaDAlleviation of salt stress by plant growth regulators and IAA producing bacteria in wheatActa Physiol. Plant.2009318618641:CAS:528:DC%2BD1MXnsVWkurY%3D YangSZhangQGuoJCharkowskiA OGlickB RIbekweA MCookseyD AYangC-HGlobal effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937Appl. Environ. Microbiol.200773107910881:CAS:528:DC%2BD2sXitlyqs7g%3D17189441 SergeevaEHirkalaD L MNelsonL MProduction of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolatesPlant Soil.20072971131:CAS:528:DC%2BD2sXptFegs7Y%3D JiS-QWangBLuMLiF-LDirect bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphilaBiotechnol. Biofuels.2016981270422104818487 WoodwardA WBartelBAuxin: regulation, action, and interactionAnn. Bot.2005957077351:CAS:528:DC%2BD2MXjvFOrsbs%3D157497534246732 GhoshSSenguptaCMaitiT KBasuP SProduction of 3-indolylacetic acid in root nodules and culture by a Rhizobium species isolated from root nodules of the leguminous pulse Phaseolus mungoFolia Microbiol. (Praha)2008533513551:CAS:528:DC%2BD1cXhtVGgtLzK18759120 ZhangCMaKXingX-HRegulation of hydrogen production by Enterobacter aerogenes by external NADH and NAD+Int. J. Hydrogen Energy200934122612321:CAS:528:DC%2BD1MXht1Gnu7w%3D HoffartEGrenzSLangeJNitschelRMüllerFSchwentnerAFeithALenfers-LückerMTakorsRBlombachBHigh substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnologyAppl. Environ. Microbiol.201783e01614e016171:CAS:528:DC%2BC1cXpsl2htrk%3D288874175666143 KucukCCevheriCIn vitro antagonism of Rhizobium strains isolated from various legumesJ. Pure Appl. Microbiol.20159503511 BitterTMuirH MA modified uronic acid carbazole reactionAnal. Biochem.196243303341:CAS:528:DyaF3sXnsVyrtw%3D%3D13971270 ColabroyK LBegleyT PTryptophan catabolism: identification and characterization of a new degradative pathwayJ. Bacteriol.2005187786678691:CAS:528:DC%2BD2MXht1Wnu7%2FP162673121280306 BertinYDevalCde la FoyeAMassonLGannonVHarelJMartinCDesvauxMForanoEThe gluconeogenesis pathway is involved in maintenance of enterohaemorrhagic Escherichia coli O157:H7 in bovine intestinal contentPLoS One20149e98367248871874041753 ApineO AJadhavJ POptimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVMJ. Appl. Microbiol.2011110123512441:CAS:528:DC%2BC3MXnt1entrg%3D21332896 MujahidMSasikalaCRamanaC VCarbon catabolite repression-independent and pH-dependent production of indoles by Rubrivivax benzoatilyticus JA2Curr. Microbiol.2013673994051:CAS:528:DC%2BC3sXhtlCgtrnK23666086 OnaOVan ImpeJPrinsenEVanderleydenJGrowth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlledFEMS Microbiol. Lett.20052461251321:CAS:528:DC%2BD2MXjslKgt7w%3D15869971 BangH BChoiI HJangJ HJeongK JEngineering of Escherichia coli for the economic production L-phenylalanine in large-scale bioreactorBiotechnol. Bioprocess Eng.2021264684751:CAS:528:DC%2BB3MXhsVCltLrE O A Apine (56_CR11) 2011; 110 O Ona (56_CR10) 2005; 246 S Emami (56_CR17) 2019; 13 C K Gutierrez (56_CR28) 2009; 75 O Salcher (56_CR42) 1980; 121 C Zhang (56_CR44) 2009; 34 S Wagi (56_CR15) 2019; 7 Y Bertin (56_CR41) 2014; 9 Y Oh (56_CR2) 2015; 10 B Mohite (56_CR7) 2013; 13 Y Li (56_CR43) 2019; 14 E Hoffart (56_CR26) 2017; 83 K L Colabroy (56_CR34) 2005; 187 R J Ryu (56_CR32) 2008; 190 J L Botsford (56_CR40) 1971; 105 M Mujahid (56_CR18) 2013; 67 T Bitter (56_CR22) 1962; 4 J Wang (56_CR45) 2013; 135 S-Q Ji (56_CR39) 2016; 9 D Egamberdieva (56_CR9) 2009; 31 S Ghosh (56_CR27) 2008; 53 U Bharucha (56_CR13) 2013; 2 S Woo (56_CR4) 2022; 15 B Górka (56_CR25) 2017; 1057 H G Lim (56_CR1) 2019; 10 S Woo (56_CR3) 2022; 27 C Kucuk (56_CR29) 2015; 9 L G Hernández-Montiel (56_CR8) 2017; 17 M Enquist-Newman (56_CR38) 2014; 505 A W Woodward (56_CR5) 2005; 95 Y-G Lee (56_CR16) 2022; 27 D Duca (56_CR6) 2014; 106 B Sasirekha (56_CR19) 2012; 12 V Jeyanthi (56_CR20) 2013; 4 M Szkop (56_CR24) 2013; 103 E Sergeeva (56_CR21) 2007; 297 G Zhang (56_CR37) 2021; 26 S Yang (56_CR31) 2007; 73 H B Bang (56_CR36) 2021; 26 P Bortolotti (56_CR35) 2016; 16 M Ahmed (56_CR14) 2010; 20 C L Patten (56_CR30) 2013; 39 M Chaiharn (56_CR12) 2011; 62 R R Bouknight (56_CR33) 1975; 121 S Gang (56_CR23) 2019; 9 |
References_xml | – reference: WooSMoonJ HSungJBaekDShonY JJungG YRecent advances in the utilization of brown macroalgae as feedstock for microbial biorefineryBiotechnol. Bioprocess Eng.2022278798891:CAS:528:DC%2BB38XjtVylt7vI – reference: LeeY-GJuYSunLParkSJinY-SKimS RAcetate-rich cellulosic hydrolysates and their bioconversion using yeastsBiotechnol. Bioprocess Eng.2022278908991:CAS:528:DC%2BB38XjtVGrurfM – reference: EmamiSAlikhaniH APourbabaeiA AEtesamiHSarmadianFMotessharezadehBAssessment of the potential of indole-3-acetic acid producing bacteria to manage chemical fertilizers applicationInt. J. Environ. Res.2019136036111:CAS:528:DC%2BC1MXitFemsrjF – reference: JiS-QWangBLuMLiF-LDirect bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphilaBiotechnol. Biofuels.2016981270422104818487 – reference: SergeevaEHirkalaD L MNelsonL MProduction of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolatesPlant Soil.20072971131:CAS:528:DC%2BD2sXptFegs7Y%3D – reference: AhmedMStalL JHasnainSProduction of indole-3-acetic acid by the cyanobacterium Arthrospira platensis strain MMG-9J. Microbiol. Biotechnol.201020125912651:CAS:528:DC%2BC3cXhtlKrtrbO20890089 – reference: JeyanthiVGaneshPProduction, optimization and characterization of phytohormone indole acetic acid by Pseudomonas fluorescenceInt. J. Pharm. Biol. Sci. Arch.20134514520 – reference: BangH BChoiI HJangJ HJeongK JEngineering of Escherichia coli for the economic production L-phenylalanine in large-scale bioreactorBiotechnol. Bioprocess Eng.2021264684751:CAS:528:DC%2BB3MXhsVCltLrE – reference: WagiSAhmedABacillus spp.: potent microfactories of bacterial IAAPeerJ.20197e7258313723166659656 – reference: LimH GKwakD HParkSWooSYangJ-SKangC WKimBNohM HSeoS WJungG YNat. Commun.2019102486311717826554313 – reference: OhYXuXKimJ YParkJ MMaximizing the utilization of Laminaria japonica as biomass via improvement of alginate lyase activity in a two-phase fermentation systemBiotechnol. J.201510128112881:CAS:528:DC%2BC2MXhtFWnsLjF26098412 – reference: ZhangCMaKXingX-HRegulation of hydrogen production by Enterobacter aerogenes by external NADH and NAD+Int. J. Hydrogen Energy200934122612321:CAS:528:DC%2BD1MXht1Gnu7w%3D – reference: HoffartEGrenzSLangeJNitschelRMüllerFSchwentnerAFeithALenfers-LückerMTakorsRBlombachBHigh substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnologyAppl. Environ. Microbiol.201783e01614e016171:CAS:528:DC%2BC1cXpsl2htrk%3D288874175666143 – reference: WooSLimH GHanY HParkSNohM HBaekDMoonJ HSeoS WJungG YA Vibrio-based microbial platform for accelerated lignocellulosic sugar conversionBiotechnol. Biofuels. Bioprod.202215581:CAS:528:DC%2BB38XisVCktb7F356144599134653 – reference: WoodwardA WBartelBAuxin: regulation, action, and interactionAnn. Bot.2005957077351:CAS:528:DC%2BD2MXjvFOrsbs%3D157497534246732 – reference: OnaOVan ImpeJPrinsenEVanderleydenJGrowth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlledFEMS Microbiol. Lett.20052461251321:CAS:528:DC%2BD2MXjslKgt7w%3D15869971 – reference: PattenC LBlakneyA J CCoulsonT J DActivity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteriaCrit. Rev. Microbiol.2013393954151:CAS:528:DC%2BC3sXhsFynsbfO22978761 – reference: BertinYDevalCde la FoyeAMassonLGannonVHarelJMartinCDesvauxMForanoEThe gluconeogenesis pathway is involved in maintenance of enterohaemorrhagic Escherichia coli O157:H7 in bovine intestinal contentPLoS One20149e98367248871874041753 – reference: GutierrezC KMatsuiG YLincolnD ELovellC RProduction of the phytohormone indole-3-acetic acid by estuarine species of the genus VibrioAppl. Environ. Microbiol.200975225322581:CAS:528:DC%2BD1MXlsFCiu7Y%3D192184112675210 – reference: KucukCCevheriCIn vitro antagonism of Rhizobium strains isolated from various legumesJ. Pure Appl. Microbiol.20159503511 – reference: WangJKimY MRheeH SLeeM WParkJ MBioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3Bioresour. Technol.20131351992061:CAS:528:DC%2BC38XhslejsL3M23186687 – reference: SasirekhaBShivakumarSSulliaS BStatistical optimization for improved indole-3-acetic acid (iaa) production by Pseudomonas aeruginosa and demonstration of enhanced plant growth promotionJ. Soil Sci. Plant Nutr.201212863873 – reference: RyuR JPattenC LAromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5J. Bacteriol.2008190720072081:CAS:528:DC%2BD1cXhtlajtLjM187575312580706 – reference: BortolottiPHennartBThieffryCJausionsGFaureEGrandjeanTThepautMDesseinRAllorgeDGueryB PFaureKKipnisEToussaintBGouellecA LTryptophan catabolism in Pseudomonas aeruginosa and potential for inter-kingdom relationshipBMC Microbiol.201616137273920674938989 – reference: BotsfordJ LDeMossR DCatabolite repression of tryptophanase in Escherichia coliJ. Bacteriol.19711053033121:CAS:528:DyaE3MXmtFyiug%3D%3D4322348248355 – reference: MohiteBIsolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growthJ. Soil Sci. Plant Nutr.201313638649 – reference: Enquist-NewmanMFaustA M EBravoD DSantosC N SRaisnerR MHanelASarvabhowmanPLeCRegitskyD DCooperS RPeereboomLClarkAMartinezYGoldsmithJChoM YDonohoueP DLuoLLambersonBTamrakarPKimE JVillariJ LGillATripathiS AKaramcheduPParedesC JRajgarhiaVKotlarH KBaileyR BMillerD JOhlerN LSwimmerCYoshikuniYEfficient ethanol production from brown macroalgae sugars by a synthetic yeast platformNature20145052392431:CAS:528:DC%2BC2cXltVSrsA%3D%3D24291791 – reference: GórkaBWieczorekP PSimultaneous determination of nine phytohormones in seaweed and algae extracts by HPLC-PDAJ. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20171057323928499204 – reference: ColabroyK LBegleyT PTryptophan catabolism: identification and characterization of a new degradative pathwayJ. Bacteriol.2005187786678691:CAS:528:DC%2BD2MXht1Wnu7%2FP162673121280306 – reference: DucaDLorvJPattenC LRoseDGlickB RIndole-3-acetic acid in plant–microbe interactionsAntonie Van Leeuwenhoek2014106851251:CAS:528:DC%2BC2cXhtVKhsb3I24445491 – reference: LiYLiuBGuoJCongHHeSZhouHZhuFWangQZhangLL-Tryptophan represses persister formation via inhibiting bacterial motility and promoting antibiotics absorptionFuture Microbiol.2019147577711:CAS:528:DC%2BC1MXhsVelsrzP31271063 – reference: GangSSharmaSSarafMBuckMSchumacherJAnalysis of indole-3-acetic acid (IAA) production in Klebsiellaby LC-MS/MS and the Salkowski methodBio Protoc.20199e32301:CAS:528:DC%2BC1MXit1Cqtr7E336550167854044 – reference: SalcherOLingensFMetabolism of tryptophan by Pseudomonas aureofaciens and its relationship to pyrrolnitrin biosynthesisJ. Gen. Microbiol.19801214654711:CAS:528:DyaL3MXkt1SqurY%3D7264603 – reference: SzkopMBielawskiWA simple method for simultaneous RP-HPLC determination of indolic compounds related to bacterial biosynthesis of indole-3-acetic acidAntonie Van Leeuwenhoek20131036836911:CAS:528:DC%2BC3sXisValsrw%3D23111785 – reference: BouknightR RSadoffH LTryptophan catabolism in Bacillus megateriumJ. Bacteriol.197512170761:CAS:528:DyaE2MXot1OmsQ%3D%3D803956285614 – reference: EgamberdievaDAlleviation of salt stress by plant growth regulators and IAA producing bacteria in wheatActa Physiol. Plant.2009318618641:CAS:528:DC%2BD1MXnsVWkurY%3D – reference: GhoshSSenguptaCMaitiT KBasuP SProduction of 3-indolylacetic acid in root nodules and culture by a Rhizobium species isolated from root nodules of the leguminous pulse Phaseolus mungoFolia Microbiol. (Praha)2008533513551:CAS:528:DC%2BD1cXhtVGgtLzK18759120 – reference: BharuchaUPatelKTrivediU BOptimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra)Agric. Res.201322152211:CAS:528:DC%2BC3sXhsVSitbbI – reference: MujahidMSasikalaCRamanaC VCarbon catabolite repression-independent and pH-dependent production of indoles by Rubrivivax benzoatilyticus JA2Curr. Microbiol.2013673994051:CAS:528:DC%2BC3sXhtlCgtrnK23666086 – reference: BitterTMuirH MA modified uronic acid carbazole reactionAnal. Biochem.196243303341:CAS:528:DyaF3sXnsVyrtw%3D%3D13971270 – reference: ApineO AJadhavJ POptimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVMJ. Appl. Microbiol.2011110123512441:CAS:528:DC%2BC3MXnt1entrg%3D21332896 – reference: ZhangGRenXLiangXWangYFengDZhangYXianMZouHImproving the microbial production of amino acids: from conventional approaches to recent trendsBiotechnol. Bioprocess Eng.2021267087271:CAS:528:DC%2BB3MXisVCgsr3N – reference: ChaiharnMLumyongSScreening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growthCurr. Microbiol.2011621731811:CAS:528:DC%2BC3cXhsF2gt7%2FP20552360 – reference: YangSZhangQGuoJCharkowskiA OGlickB RIbekweA MCookseyD AYangC-HGlobal effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937Appl. Environ. Microbiol.200773107910881:CAS:528:DC%2BD2sXitlyqs7g%3D17189441 – reference: Hernández-MontielL GChiquito ContrerasC JMurillo AmadorBVidal HernándezLQuiñones AguilarE EChiquito ContrerasR GEfficiency of two inoculation methods of Pseudomonas putida on growth and yield of tomato plantsJ. Soil Sci. Plant Nutr.20171710031012 – volume: 20 start-page: 1259 year: 2010 ident: 56_CR14 publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.1004.04033 – volume: 4 start-page: 514 year: 2013 ident: 56_CR20 publication-title: Int. J. Pharm. Biol. Sci. Arch. – volume: 62 start-page: 173 year: 2011 ident: 56_CR12 publication-title: Curr. Microbiol. doi: 10.1007/s00284-010-9674-6 – volume: 53 start-page: 351 year: 2008 ident: 56_CR27 publication-title: Folia Microbiol. (Praha) doi: 10.1007/s12223-008-0054-6 – volume: 95 start-page: 707 year: 2005 ident: 56_CR5 publication-title: Ann. Bot. doi: 10.1093/aob/mci083 – volume: 106 start-page: 85 year: 2014 ident: 56_CR6 publication-title: Antonie Van Leeuwenhoek doi: 10.1007/s10482-013-0095-y – volume: 17 start-page: 1003 year: 2017 ident: 56_CR8 publication-title: J. Soil Sci. Plant Nutr. doi: 10.4067/S0718-95162017000400012 – volume: 13 start-page: 638 year: 2013 ident: 56_CR7 publication-title: J. Soil Sci. Plant Nutr. – volume: 9 start-page: e3230 year: 2019 ident: 56_CR23 publication-title: Bio Protoc. doi: 10.21769/BioProtoc.3230 – volume: 14 start-page: 757 year: 2019 ident: 56_CR43 publication-title: Future Microbiol. doi: 10.2217/fmb-2019-0051 – volume: 297 start-page: 1 year: 2007 ident: 56_CR21 publication-title: Plant Soil. doi: 10.1007/s11104-007-9314-5 – volume: 27 start-page: 890 year: 2022 ident: 56_CR16 publication-title: Biotechnol. Bioprocess Eng. doi: 10.1007/s12257-022-0217-3 – volume: 16 start-page: 137 year: 2016 ident: 56_CR35 publication-title: BMC Microbiol. doi: 10.1186/s12866-016-0756-x – volume: 505 start-page: 239 year: 2014 ident: 56_CR38 publication-title: Nature doi: 10.1038/nature12771 – volume: 105 start-page: 303 year: 1971 ident: 56_CR40 publication-title: J. Bacteriol. doi: 10.1128/jb.105.1.303-312.1971 – volume: 9 start-page: 503 year: 2015 ident: 56_CR29 publication-title: J. Pure Appl. Microbiol. – volume: 4 start-page: 330 year: 1962 ident: 56_CR22 publication-title: Anal. Biochem. doi: 10.1016/0003-2697(62)90095-7 – volume: 1057 start-page: 32 year: 2017 ident: 56_CR25 publication-title: J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. doi: 10.1016/j.jchromb.2017.04.048 – volume: 7 start-page: e7258 year: 2019 ident: 56_CR15 publication-title: PeerJ. doi: 10.7717/peerj.7258 – volume: 12 start-page: 863 year: 2012 ident: 56_CR19 publication-title: J. Soil Sci. Plant Nutr. – volume: 187 start-page: 7866 year: 2005 ident: 56_CR34 publication-title: J. Bacteriol. doi: 10.1128/JB.187.22.7866-7869.2005 – volume: 135 start-page: 199 year: 2013 ident: 56_CR45 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.10.012 – volume: 190 start-page: 7200 year: 2008 ident: 56_CR32 publication-title: J. Bacteriol. doi: 10.1128/JB.00804-08 – volume: 121 start-page: 70 year: 1975 ident: 56_CR33 publication-title: J. Bacteriol. doi: 10.1128/jb.121.1.70-76.1975 – volume: 75 start-page: 2253 year: 2009 ident: 56_CR28 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02072-08 – volume: 10 start-page: 1281 year: 2015 ident: 56_CR2 publication-title: Biotechnol. J. doi: 10.1002/biot.201400860 – volume: 246 start-page: 125 year: 2005 ident: 56_CR10 publication-title: FEMS Microbiol. Lett. doi: 10.1016/j.femsle.2005.03.048 – volume: 26 start-page: 708 year: 2021 ident: 56_CR37 publication-title: Biotechnol. Bioprocess Eng. doi: 10.1007/s12257-020-0390-1 – volume: 13 start-page: 603 year: 2019 ident: 56_CR17 publication-title: Int. J. Environ. Res. doi: 10.1007/s41742-019-00197-6 – volume: 26 start-page: 468 year: 2021 ident: 56_CR36 publication-title: Biotechnol. Bioprocess Eng. doi: 10.1007/s12257-020-0313-1 – volume: 83 start-page: e01614 year: 2017 ident: 56_CR26 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01614-17 – volume: 73 start-page: 1079 year: 2007 ident: 56_CR31 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01770-06 – volume: 9 start-page: 81 year: 2016 ident: 56_CR39 publication-title: Biotechnol. Biofuels. doi: 10.1186/s13068-016-0494-1 – volume: 27 start-page: 879 year: 2022 ident: 56_CR3 publication-title: Biotechnol. Bioprocess Eng. doi: 10.1007/s12257-022-0301-8 – volume: 121 start-page: 465 year: 1980 ident: 56_CR42 publication-title: J. Gen. Microbiol. – volume: 39 start-page: 395 year: 2013 ident: 56_CR30 publication-title: Crit. Rev. Microbiol. doi: 10.3109/1040841X.2012.716819 – volume: 34 start-page: 1226 year: 2009 ident: 56_CR44 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.11.070 – volume: 9 start-page: e98367 year: 2014 ident: 56_CR41 publication-title: PLoS One doi: 10.1371/journal.pone.0098367 – volume: 10 start-page: 2486 year: 2019 ident: 56_CR1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10371-1 – volume: 31 start-page: 861 year: 2009 ident: 56_CR9 publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-009-0297-0 – volume: 67 start-page: 399 year: 2013 ident: 56_CR18 publication-title: Curr. Microbiol. doi: 10.1007/s00284-013-0378-6 – volume: 2 start-page: 215 year: 2013 ident: 56_CR13 publication-title: Agric. Res. doi: 10.1007/s40003-013-0065-7 – volume: 110 start-page: 1235 year: 2011 ident: 56_CR11 publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2011.04976.x – volume: 15 start-page: 58 year: 2022 ident: 56_CR4 publication-title: Biotechnol. Biofuels. Bioprod. doi: 10.1186/s13068-022-02157-3 – volume: 103 start-page: 683 year: 2013 ident: 56_CR24 publication-title: Antonie Van Leeuwenhoek doi: 10.1007/s10482-012-9838-4 |
SSID | ssj0047888 |
Score | 2.3716915 |
Snippet | The production of indole-3-acetic acid (IAA) by bacteria has attracted considerable attention in plant studies due to its significant role as a plant growth... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 695 |
SubjectTerms | Acetic acid Acid production Algae Alginates Alginic acid Bacteria Biosynthesis Biotechnology Carbon Carbon sources Chemistry Chemistry and Materials Science glucose Growth regulators indole acetic acid Indoleacetic acid Industrial and Production Engineering Mannitol Microorganisms Nicotinamide adenine dinucleotide Plant growth Research Paper Tryptophan Vibrio 생물공학 |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dTxQxEJ8IvOgDUdC4iKZGnjTV3ba0XV_MhUjARMKDmHtrum0XCGT3vDsS_O-d2du980zkaZP9zsy08_0bgAOjylxEE3lto-TKqor7skrU-uRlEiIWkQL638_0yYX6Nj4c9wG3WV9WOeyJ3UYd20Ax8k_CatxrS1SIXya_OE2NouxqP0JjA7YIuoxKusx46XARMnzXCocmBkdHTAxZza51DgXZcNRYnNAw-f2aXtpopvWayflPlrRTPsdPYbu3GtloweZn8Cg1O_DkLyzBXXCnDYEzccl9oMZENgrXkZ0vAF2R-IwaSdjoluYwzBOrfrOfVO3fstnkI4tXl59ZVwzaRdmZbyI7Wodyfg4Xx19_HJ3wfnoCD9KqOde-MKkw0epDn0cpi6R1KE1uE6rwKnpRePS_dBJSiVSjHjd4At0HPIoa7QL5AjabtkkvgdlcqbpIhCWvVFC6EuiPlzKEZGPUpckgH2jnQg8tThMubt0KFJnI7ZDcjsjt7jN4v3xkssDVeOjmd8gQdxOuHaFh0_GydTdThzb_qSNIQPT7RAb7A8NcvxBnbiU2GbxdXsYlRHkR36T2buYk7vroZhmrMvgwMHr1iv_-1t7DH3wFj0UnX1QtuA-b8-ldeo0WzLx604npH1Zu6QI priority: 102 providerName: ProQuest |
Title | Indole-3-acetic Acid Production from Alginate by Vibrio sp. dhg: Physiology and Characteristics |
URI | https://link.springer.com/article/10.1007/s12257-023-0056-x https://www.proquest.com/docview/2863629710 https://www.proquest.com/docview/3153182784 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003012116 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Biotechnology and Bioprocess Engineering, 2023, 28(4), , pp.695-703 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6x7QF4mGCACBuVETyBjBLbjR3e0qrdBqKaEEXlyUpsZ0yb0qntJPj33KXJShEg8ZKTEseK7i6-O9_dZ4BXWmWx8NrzynjJlVElL7IyUOtTIYMQPvG0of9xkp5M1ftZf9b2cS-7avcuJdms1JtmN1Q9zdHGcMKv5Og47vUpdEclnoq8W34JDr7pf0O_gmP0JbpU5p-m2DJGO_Wi2vIzf0uNNhZn_AD2W1eR5WvZPoQ7oT6Au8PuhLYDuP8LmOAjsKc1oTNxyQtHnYksdxeena0RXZH7jDpJWH5FBzGsAit_sC9U7j9ny-u3zH87f8eaatBmm50VtWfDbSznxzAdjz4PT3h7fAJ30qgVT4tEh0R7k_aL2EuZhDR1mY5NQBte-kIkBQZgaRBSiVChIdd4A-MHpKJCx0A-gd16XoenwEysVJUEApNXyqm0FBiQZ9K5YLxPMx1B3PHRuhZbnI64uLIbVGRivUXWW2K9_R7B69tXrtfAGv8a_BKFYy_dhSU4bKLnc3u5sOj0n1rCBMTAT0Rw1AnPtn_i0gqToo3O0JGK4MXtYxQUJUaKOsxvllbiso9xljYqgjed0DdT_PWznv3X6EO4JxrVo-rBI9hdLW7Cc_RoVmUPdvRM49WMj3uwl48HgwnR468fRkgHo8nZp16j5T8BRfvwRg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615QAcEOUhUgo1Ai4gl8R2YwepQqvCsksf4tCi3kxiO23VKll2t6L9U_zGzmQ3XRaJ3nqylIcTzcMz4_F8A_BGqywWXnteGi-5MqrgeVYEKn3KZRDCJ5429Hf30t6B-na4cbgAf9paGDpW2a6JzULta0d75B-ESXGtzdAgfhr84tQ1irKrbQuNiVhsh8vfGLKNNvufkb9vheh-2d_q8WlXAe6kUWOe5okOifYm3chjL2US0tRlOjYBTVvhc5HkGJekQUglQon2TeMFdKtxFCXaS4nzLsIdJWVGGmW6X9uVn5Dom9I7dGk4Bn6izaI2pXqoOJqjheSEvskv5uzgYjUs51zcf7KyjbHrPoQHUy-VdSZitQwLoXoE9__CLnwMtl8RGBSXPHdUCMk67sSz7xMAWWQ2o8IV1jmjvg_jwIpL9oOqC2o2Gqwzf3z0kTWHT5tdfZZXnm3NQ0c_gYNboetTWKrqKjwDZmKlyiQQdr1STqWFwPg_k84F432a6QjilnbWTaHMqaPGmZ2BMBO5LZLbErntRQTvrl8ZTHA8bnr4NTLEnroTS-jbNB7V9nRoMcboW4IgxDhTRLDaMsxOFX9kZ2Iawavr26iylIfJq1Cfj6xEK4NhnTYqgvcto2dT_Pe3Vm7-4Brc7e3v7tid_t72c7gnGlmjk4qrsDQenocX6D2Ni5eNyDL4eds6cgUqTyLz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tQ0LwgPgUgQFGwAvILLHdOEFCqNqoVgbTHhjqm3FsZ0ybktJ2YvvX-Ou4S5OWIrG3PVnKhxPdh-_O5_sdwEut8lh47XmZeclVpgpu8yJQ6ZOVQQifeNrQ_7Kf7h6qT6PeaA1-d7UwdKyyWxObhdrXjvbIt0SW4lqbo0HcKttjEQc7gw_jn5w6SFGmtWunMReRvXDxC8O36fvhDvL6lRCDj1-3d3nbYYA7makZT22iQ6J9lvZs7KVMQpq6XMdZQDNXeCsSizFKGoRUIpRo6zReQBcbR1Gi7ZQ47zpc07KXkI7p0SLYI1T6pgwP3RuOQaDoMqpN2R4qkeZoLTkhcfLzFZu4Xk3KFXf3nwxtY_gGt-FW67Gy_lzE7sBaqO7Czb9wDO-BGVYEDMUlt46KIlnfHXt2MAeTRcYzKmJh_VPqATELrLhg36jSoGbT8Vvmfxy9Y81B1GaHn9nKs-1VGOn7cHgldH0AG1VdhYfAslipMgmEY6-UU2khQoEuinMh8z7NdQRxRzvjWlhz6q5xapaAzERug-Q2RG5zHsHrxSvjOabHZQ-_QIaYE3dsCImbxqPanEwMxhtDQ3CEGHOKCDY7hpl2EZiapchG8HxxG9WXcjK2CvXZ1Ei0OBji6UxF8KZj9HKK__7Wo8s_-Ayuo3aYz8P9vcdwQzSiRocWN2FjNjkLT9CRmhVPG4ll8P2qVeQP8P0nIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indole-3-acetic+Acid+Production+from+Alginate+by+Vibrio+sp.+dhg%3A+Physiology+and+Characteristics&rft.jtitle=Biotechnology+and+bioprocess+engineering&rft.au=Shin%2C+Hyo+Jeong&rft.au=Woo%2C+Sunghwa&rft.au=Jung%2C+Gyoo+Yeol&rft.au=Park%2C+Jong+Moon&rft.date=2023-08-01&rft.issn=1226-8372&rft.volume=28&rft.issue=4+p.695-703&rft.spage=695&rft.epage=703&rft_id=info:doi/10.1007%2Fs12257-023-0056-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-8372&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-8372&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-8372&client=summon |