Inter- and intra-observer variability of an anatomical landmark-based, manual segmentation method by MRI for the assessment of skeletal muscle fat content and area in subjects from the general population

Changes in skeletal muscle composition, such as fat content and mass, may exert unique metabolic and musculoskeletal risks; however, the reproducibility of their assessment is unknown. We determined the variability of the assessment of skeletal muscle fat content and area by MRI in a population-base...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of radiology Vol. 91; no. 1089; p. 20180019
Main Authors Kiefer, Lena Sophie, Fabian, Jana, Lorbeer, Roberto, Machann, Jürgen, Storz, Corinna, Kraus, Mareen Sarah, Wintermeyer, Elke, Schlett, Christopher, Roemer, Frank, Nikolaou, Konstantin, Peters, Annette, Bamberg, Fabian
Format Journal Article
LanguageEnglish
Published England The British Institute of Radiology 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Changes in skeletal muscle composition, such as fat content and mass, may exert unique metabolic and musculoskeletal risks; however, the reproducibility of their assessment is unknown. We determined the variability of the assessment of skeletal muscle fat content and area by MRI in a population-based sample. A random sample from a prospective, community-based cohort study (KORA-FF4) was included. Skeletal muscle fat content was quantified as proton-density fat fraction (PDFF) and area as cross-sectional area (CSA) in multi-echo Dixon sequences (TR 8.90 ms, six echo times, flip angle 4°) by a standardized, anatomical landmark-based, manual skeletal muscle segmentation at level L3 vertebra by two independent observers. Reproducibility was assessed by intraclass correlation coefficients (ICC), scatter and Bland-Altman plots. From 50 subjects included (mean age 56.1 ± 8.8 years, 60.0% males, mean body mass index 28.3 ± 5.2) 2'400 measurements were obtained. Interobserver agreement was excellent for all muscle compartments (PDFF: ICC0.99, CSA: ICC0.98) with only minor absolute and relative differences (-0.2 ± 0.5%, 31 ± 44.7 mm ; -2.6 ± 6.4% and 2.7 ± 3.9%, respectively). Intra-observer reproducibility was similarly excellent (PDFF: ICC1.0, 0.0 ± 0.4%, 0.4%; CSA: ICC1.0, 5.5 ± 25.3 mm , 0.5%, absolute and relative differences, respectively). All agreement was independent of age, gender, body mass index, body height and visceral adipose tissue (ICC0.96-1.0). Furthermore, PDFF reproducibility was independent of CSA (ICC0.93-0.99).  Conclusions:  Quantification of skeletal muscle fat content and area by MRI using an anatomical landmark-based, manual skeletal muscle segmentation is highly reproducible. Advances in knowledge: An anatomical landmark-based, manual skeletal muscle segmentation provides high reproducibility of skeletal muscle fat content and area and may therefore serve as a robust proxy for myosteatosis and sarcopenia in large cohort studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0007-1285
1748-880X
1748-880X
DOI:10.1259/bjr.20180019