Neuroprotection of the Inner Retina Also Prevents Secondary Outer Retinal Pathology in a Mouse Model of Glaucoma

We examined structural and functional changes in the outer retina of a mouse model of glaucoma. We examined whether these changes are a secondary consequence of damage in the inner retina and whether neuroprotection of the inner retina also prevents outer retinal changes. We used an established micr...

Full description

Saved in:
Bibliographic Details
Published inInvestigative ophthalmology & visual science Vol. 62; no. 9; p. 35
Main Authors Kumar, Sandeep, Ramakrishnan, Hariharasubramanian, Viswanathan, Suresh, Akopian, Abram, Bloomfield, Stewart A
Format Journal Article
LanguageEnglish
Published United States The Association for Research in Vision and Ophthalmology 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We examined structural and functional changes in the outer retina of a mouse model of glaucoma. We examined whether these changes are a secondary consequence of damage in the inner retina and whether neuroprotection of the inner retina also prevents outer retinal changes. We used an established microbead occlusion model of glaucoma whereby intraocular pressure (IOP) was elevated. Specific antibodies were used to label rod and cone bipolar cells (BCs), horizontal cells (HCs), and retinal ganglion cells (RGCs), as well as synaptic components in control and glaucomatous eyes, to assess structural damage and cell loss. ERG recordings were made to assess outer retina function. We found structural and functional damage of BCs, including significant cell loss and dendritic/axonal remodeling of HCs, following IOP elevation. The first significant loss of both BCs occurred at 4 to 5 weeks after microbead injection. However, early changes in the dendritic structure of RGCs were observed at 3 weeks, but significant changes in the rod BC axon terminal structure were not seen until 4 weeks. We found that protection of inner retinal neurons in glaucomatous eyes by pharmacological blockade of gap junctions or genetic ablation of connexin 36 largely prevented outer retinal damage. Together, our results indicate that outer retinal impairments in glaucoma are a secondary sequalae of primary damage in the inner retina. The finding that neuroprotection of the inner retina can also prevent outer retinal damage has important implications with regard to the targets for effective neuroprotective therapy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1552-5783
0146-0404
1552-5783
DOI:10.1167/iovs.62.9.35