Bounded Kalman filter method for motion-robust, non-contact heart rate estimation
The authors of this work present a real-time measurement of heart rate across different lighting conditions and motion categories. This is an advancement over existing remote Photo Plethysmography (rPPG) methods that require a static, controlled environment for heart rate detection, making them impr...
Saved in:
Published in | Biomedical optics express Vol. 9; no. 2; pp. 873 - 897 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Optical Society of America
01.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2156-7085 2156-7085 |
DOI | 10.1364/BOE.9.000873 |
Cover
Loading…
Abstract | The authors of this work present a real-time measurement of heart rate across different lighting conditions and motion categories. This is an advancement over existing remote Photo Plethysmography (rPPG) methods that require a static, controlled environment for heart rate detection, making them impractical for real-world scenarios wherein a patient may be in motion, or remotely connected to a healthcare provider through telehealth technologies. The algorithm aims to minimize motion artifacts such as blurring and noise due to head movements (uniform, random) by employing i) a blur identification and denoising algorithm for each frame and ii) a bounded Kalman filter technique for motion estimation and feature tracking. A case study is presented that demonstrates the feasibility of the algorithm in non-contact estimation of the pulse rate of subjects performing everyday head and body movements. The method in this paper outperforms state of the art rPPG methods in heart rate detection, as revealed by the benchmarked results. |
---|---|
AbstractList | The authors of this work present a real-time measurement of heart rate across different lighting conditions and motion categories. This is an advancement over existing remote Photo Plethysmography (rPPG) methods that require a static, controlled environment for heart rate detection, making them impractical for real-world scenarios wherein a patient may be in motion, or remotely connected to a healthcare provider through telehealth technologies. The algorithm aims to minimize motion artifacts such as blurring and noise due to head movements (uniform, random) by employing i) a blur identification and denoising algorithm for each frame and ii) a bounded Kalman filter technique for motion estimation and feature tracking. A case study is presented that demonstrates the feasibility of the algorithm in non-contact estimation of the pulse rate of subjects performing everyday head and body movements. The method in this paper outperforms state of the art rPPG methods in heart rate detection, as revealed by the benchmarked results. The authors of this work present a real-time measurement of heart rate across different lighting conditions and motion categories. This is an advancement over existing remote Photo Plethysmography (rPPG) methods that require a static, controlled environment for heart rate detection, making them impractical for real-world scenarios wherein a patient may be in motion, or remotely connected to a healthcare provider through telehealth technologies. The algorithm aims to minimize motion artifacts such as blurring and noise due to head movements (uniform, random) by employing i) a blur identification and denoising algorithm for each frame and ii) a bounded Kalman filter technique for motion estimation and feature tracking. A case study is presented that demonstrates the feasibility of the algorithm in non-contact estimation of the pulse rate of subjects performing everyday head and body movements. The method in this paper outperforms state of the art rPPG methods in heart rate detection, as revealed by the benchmarked results.The authors of this work present a real-time measurement of heart rate across different lighting conditions and motion categories. This is an advancement over existing remote Photo Plethysmography (rPPG) methods that require a static, controlled environment for heart rate detection, making them impractical for real-world scenarios wherein a patient may be in motion, or remotely connected to a healthcare provider through telehealth technologies. The algorithm aims to minimize motion artifacts such as blurring and noise due to head movements (uniform, random) by employing i) a blur identification and denoising algorithm for each frame and ii) a bounded Kalman filter technique for motion estimation and feature tracking. A case study is presented that demonstrates the feasibility of the algorithm in non-contact estimation of the pulse rate of subjects performing everyday head and body movements. The method in this paper outperforms state of the art rPPG methods in heart rate detection, as revealed by the benchmarked results. |
Author | Tucker, Conrad S. Prakash, Sakthi Kumar Arul |
Author_xml | – sequence: 1 givenname: Sakthi Kumar Arul surname: Prakash fullname: Prakash, Sakthi Kumar Arul – sequence: 2 givenname: Conrad S. orcidid: 0000-0001-5365-0240 surname: Tucker fullname: Tucker, Conrad S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29552419$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtLAzEUhYMo1kd3rmWWLjo1mSSdyUawxRcKReg-pJkbOzKT1CQj-O-NtoqKq1zId889nHOIdq2zgNAJwWNCJ-x8Or8aizHGuCrpDjooCJ_kJa747o95gIYhPCcGM1ZiWu2jQSE4LxgRB-hx6npbQ53dq7ZTNjNNG8FnHcSVqzPj0uhi42zu3bIPcZQlA7l2NiodsxUoHzOvImQQYtOpD_IY7RnVBhhu3yO0uL5azG7zh_nN3ezyIde0YjGnhtNSawBmBKccg2EgDK0qTpgmWuPlUivFoS5rJiaKlGWtS8YFE8pwrOgRutjIrvtlB7UGG71q5donG_5NOtXI3z-2Wckn9yp5xVlKJQmcbQW8e-mTf9k1QUPbKguuD7LAhDPCscAJPf156_vIV4wJGG0A7V0IHsw3QrD8KEqmoqSQm6ISXvzBdRM_w0tOm_b_pXdcWZcs |
CitedBy_id | crossref_primary_10_1088_1361_6579_ad548e crossref_primary_10_1109_TMM_2018_2883866 crossref_primary_10_3390_s22114097 crossref_primary_10_1109_TBME_2023_3247910 crossref_primary_10_1016_j_neucom_2024_129055 crossref_primary_10_1371_journal_pone_0311654 crossref_primary_10_1109_JBHI_2020_2998399 crossref_primary_10_3390_s20247021 crossref_primary_10_1136_bmjinnov_2019_000354 crossref_primary_10_1115_1_4045547 crossref_primary_10_1016_j_bspc_2022_104002 crossref_primary_10_1016_j_eswa_2023_120948 crossref_primary_10_1088_1361_6579_ab807c crossref_primary_10_1109_JSEN_2024_3405414 crossref_primary_10_1016_j_ajpc_2022_100379 crossref_primary_10_1016_j_bspc_2023_104898 crossref_primary_10_1038_s41746_021_00462_z crossref_primary_10_1049_bme2_12031 crossref_primary_10_1109_LSP_2023_3302697 crossref_primary_10_3934_mbe_2022241 crossref_primary_10_1109_ACCESS_2024_3523288 crossref_primary_10_3390_s22124556 crossref_primary_10_1088_1361_6579_ab2c9f crossref_primary_10_1109_TIM_2021_3060572 crossref_primary_10_1007_s00521_023_08271_z |
Cites_doi | 10.1364/BOE.7.004874 10.1109/TBME.2014.2356291 10.1364/OE.18.010762 10.1109/TBME.2010.2086456 10.1152/jappl.1962.17.3.552 10.1115/1.4037434 10.1007/s00421-015-3303-9 10.1109/JSEN.2014.2347397 10.1115/1.3662552 10.1016/S0893-6080(00)00026-5 10.1177/014233128200400205 10.1027//0269-8803.14.3.159 10.18260/1-2--27955 10.1023/B:VISI.0000013087.49260.fb 10.1109/TBME.2013.2266196 10.1109/TPAMI.2012.199 10.1007/3-540-45103-X_50 10.2165/00007256-200333070-00004 10.1016/j.chb.2017.01.036 10.3390/s111110266 10.1364/BOE.6.004610 10.1145/2185520.2185561 10.1152/ajplegacy.1951.165.1.229 10.1123/ijspp.2017-0343 10.1109/RBME.2016.2551778 10.1145/3015573 10.1364/BOE.8.001965 10.1109/TBME.2014.2323695 10.1364/BOE.6.001565 10.1007/978-3-319-11128-5_66 10.1109/TAU.1967.1161901 10.1088/0143-0815/2/3/004 10.1115/1.4035428 10.1364/OE.16.021434 10.1109/TBME.2015.2508602 10.1117/1.JBO.20.4.048002 10.1088/0967-3334/37/5/N27 10.1016/S0065-2423(08)60414-X |
ContentType | Journal Article |
Copyright | 2018 Optical Society of America under the terms of the 2018 Optical Society of America |
Copyright_xml | – notice: 2018 Optical Society of America under the terms of the 2018 Optical Society of America |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1364/BOE.9.000873 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 2156-7085 |
EndPage | 897 |
ExternalDocumentID | PMC5854085 29552419 10_1364_BOE_9_000873 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UL1 TR002014 – fundername: National Center for Advancing Translational Sciences (NCATS) – fundername: National Institutes of Health (NIH) grantid: TR000127; TR002014 – fundername: National Science Foundation (NSF) grantid: 1527148; 1624727 |
GroupedDBID | 4.4 53G 8SL AAFWJ AAWJZ AAYXX ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS AOIJS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION DIK DSZJF E3Z EBS EJD GROUPED_DOAJ GX1 HYE KQ8 LPK M~E O5R O5S OFLFD OK1 OPJBK ROL ROS RPM TR6 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c384t-3f537ccee4f95350ef4e9f388514c1cc0bbcaa5ed7d496a177dc745949af50a3 |
ISSN | 2156-7085 |
IngestDate | Thu Aug 21 13:58:18 EDT 2025 Thu Jul 10 23:01:33 EDT 2025 Mon Jul 21 05:53:33 EDT 2025 Tue Jul 01 01:36:21 EDT 2025 Thu Apr 24 23:11:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | (170.1470) Blood or tissue constituent monitoring (170.3880) Medical and biological imaging (280.4788) Optical sensing and sensors |
Language | English |
License | 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c384t-3f537ccee4f95350ef4e9f388514c1cc0bbcaa5ed7d496a177dc745949af50a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5365-0240 |
OpenAccessLink | https://www.osapublishing.org/viewmedia.cfm?URI=boe-9-2-873 |
PMID | 29552419 |
PQID | 2015415090 |
PQPubID | 23479 |
PageCount | 25 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5854085 proquest_miscellaneous_2015415090 pubmed_primary_29552419 crossref_primary_10_1364_BOE_9_000873 crossref_citationtrail_10_1364_BOE_9_000873 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomedical optics express |
PublicationTitleAlternate | Biomed Opt Express |
PublicationYear | 2018 |
Publisher | Optical Society of America |
Publisher_xml | – name: Optical Society of America |
References | Kazemi (boe-9-2-873-R47) 2014 Lam (boe-9-2-873-R11) 2015 Wang (boe-9-2-873-R17) 2016; 63 Lomaliza (boe-9-2-873-R3) 2016 Verkruysse (boe-9-2-873-R2) 2008; 16 Bradski (boe-9-2-873-R46) 2000; 25 Goodie (boe-9-2-873-R59) 2000; 14 Lopez (boe-9-2-873-R26) 2017; 71 Wang (boe-9-2-873-R16) 2017; 8 Sikdar (boe-9-2-873-R1) 2016; 9 Achten (boe-9-2-873-R58) 2003; 33 Wadhwa (boe-9-2-873-R4) 2016; 60 Dering (boe-9-2-873-R64) 2017; 18 Challoner (boe-9-2-873-R40) 1979; 1 Hyvärinen (boe-9-2-873-R32) 2000; 13 Wu (boe-9-2-873-R37) 2012; 31 Kalman (boe-9-2-873-R53) 1960; 82 Giles (boe-9-2-873-R57) 2016; 116 Chen (boe-9-2-873-R18) 2015; 15 de Haan (boe-9-2-873-R12) 2013; 60 Roberts (boe-9-2-873-R20) 1982; 4 Li (boe-9-2-873-R10) 2014 Farnebäck (boe-9-2-873-R34) 2003; 2749 Yu (boe-9-2-873-R14) 2015; 6 Balakrishnan (boe-9-2-873-R27) 2013 Butler (boe-9-2-873-R63) 2016; 37 Tulyakov (boe-9-2-873-R62) 2016 Poh (boe-9-2-873-R30) 2011; 58 Enson (boe-9-2-873-R43) 1962; 17 Wang (boe-9-2-873-R5) 2015; 62 McDuff (boe-9-2-873-R6) 2014; 61 Kumar (boe-9-2-873-R13) 2015; 6 Lopez (boe-9-2-873-R25) 2017 Welch (boe-9-2-873-R33) 1967; 15 Poh (boe-9-2-873-R9) 2010; 18 Chan (boe-9-2-873-R23) 2013; 35 Mateu-Mateus (boe-9-2-873-R60) 2015 Tsouri (boe-9-2-873-R8) 2015; 20 Nijboer (boe-9-2-873-R21) 1981; 2 Plews (boe-9-2-873-R61) 2017; 12 Amelard (boe-9-2-873-R15) 2016; 7 Bezawada (boe-9-2-873-R65) 2017; 139 Zhong (boe-9-2-873-R51) 2013 Eom (boe-9-2-873-R54) 2011; 11 Van Kampen (boe-9-2-873-R41) 1966; 8 Kramer (boe-9-2-873-R42) 1951; 165 Viola (boe-9-2-873-R44) 2004; 57 |
References_xml | – volume: 7 start-page: 4874 year: 2016 ident: boe-9-2-873-R15 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.7.004874 – volume: 62 start-page: 415 year: 2015 ident: boe-9-2-873-R5 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2356291 – volume: 18 start-page: 10762 year: 2010 ident: boe-9-2-873-R9 publication-title: Opt. Express doi: 10.1364/OE.18.010762 – volume: 58 start-page: 7 year: 2011 ident: boe-9-2-873-R30 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2086456 – volume: 17 start-page: 552 year: 1962 ident: boe-9-2-873-R43 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1962.17.3.552 – volume: 18 start-page: 011002 year: 2017 ident: boe-9-2-873-R64 publication-title: J. Comput. Inf. Sci. Eng. doi: 10.1115/1.4037434 – volume: 116 start-page: 563 year: 2016 ident: boe-9-2-873-R57 publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-015-3303-9 – start-page: 4264 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2014 ident: boe-9-2-873-R10 article-title: Remote heart rate measurement from face videos under realistic situations – volume: 15 start-page: 618 year: 2015 ident: boe-9-2-873-R18 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2347397 – volume: 82 start-page: 35 year: 1960 ident: boe-9-2-873-R53 publication-title: J. Basic Eng. doi: 10.1115/1.3662552 – volume: 13 start-page: 411 year: 2000 ident: boe-9-2-873-R32 publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00026-5 – start-page: 612 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2013 ident: boe-9-2-873-R51 article-title: Handling noise in single image deblurring using directional filters – volume: 4 start-page: 101 year: 1982 ident: boe-9-2-873-R20 publication-title: Trans. Inst. Meas. Contr. doi: 10.1177/014233128200400205 – volume: 14 start-page: 159 year: 2000 ident: boe-9-2-873-R59 publication-title: J. Psychophysiol. doi: 10.1027//0269-8803.14.3.159 – volume-title: 2017 ASEE Annual Conference & Exposition year: 2017 ident: boe-9-2-873-R25 article-title: Board# 91: When to Provide Feedback? Exploring Human-Co-Robot Interactions in Engineering Environments doi: 10.18260/1-2--27955 – volume: 57 start-page: 137 year: 2004 ident: boe-9-2-873-R44 publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000013087.49260.fb – start-page: 1867 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2014 ident: boe-9-2-873-R47 article-title: One millisecond face alignment with an ensemble of regression trees – volume: 60 start-page: 2878 year: 2013 ident: boe-9-2-873-R12 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2266196 – volume: 35 start-page: 1164 year: 2013 ident: boe-9-2-873-R23 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.199 – volume: 2749 start-page: 363 year: 2003 ident: boe-9-2-873-R34 publication-title: Image Anal. doi: 10.1007/3-540-45103-X_50 – start-page: 2396 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2016 ident: boe-9-2-873-R62 article-title: Self-adaptive matrix completion for heart rate estimation from face videos under realistic conditions – volume: 33 start-page: 517 year: 2003 ident: boe-9-2-873-R58 publication-title: Sports Med. doi: 10.2165/00007256-200333070-00004 – volume: 71 start-page: 42 year: 2017 ident: boe-9-2-873-R26 publication-title: Comput. Human Behav. doi: 10.1016/j.chb.2017.01.036 – volume: 11 start-page: 10266 year: 2011 ident: boe-9-2-873-R54 publication-title: Sensors (Basel) doi: 10.3390/s111110266 – volume: 6 start-page: 4610 year: 2015 ident: boe-9-2-873-R14 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.004610 – volume: 31 start-page: 1 year: 2012 ident: boe-9-2-873-R37 publication-title: ACM Tans. Graphics doi: 10.1145/2185520.2185561 – start-page: 3430 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2013 ident: boe-9-2-873-R27 article-title: Detecting pulse from head motions in video – volume: 165 start-page: 229 year: 1951 ident: boe-9-2-873-R42 publication-title: Am. J. Physiol. doi: 10.1152/ajplegacy.1951.165.1.229 – volume: 12 start-page: 1 year: 2017 ident: boe-9-2-873-R61 publication-title: Int. J. Sports Physiol. Perform. doi: 10.1123/ijspp.2017-0343 – volume: 9 start-page: 91 year: 2016 ident: boe-9-2-873-R1 publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2016.2551778 – volume: 60 start-page: 87 year: 2016 ident: boe-9-2-873-R4 publication-title: Commun. ACM doi: 10.1145/3015573 – volume: 8 start-page: 1965 year: 2017 ident: boe-9-2-873-R16 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.8.001965 – volume: 61 start-page: 2593 year: 2014 ident: boe-9-2-873-R6 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2323695 – volume: 6 start-page: 1565 year: 2015 ident: boe-9-2-873-R13 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.001565 – start-page: 243 volume-title: International Conference on Advanced Engineering Theory and Applications year: 2016 ident: boe-9-2-873-R3 article-title: Detecting Pulse from Head Motions Using Smartphone Camera – start-page: 3640 volume-title: Proceedings of the IEEE International Conference on Computer Vision year: 2015 ident: boe-9-2-873-R11 article-title: Robust heart rate measurement from video using select random patches – start-page: 264 volume-title: 6th European Conference of the International Federation for Medical and Biological Engineering year: 2015 ident: boe-9-2-873-R60 article-title: RR time series comparison obtained by H7 polar sensors or by photoplethysmography using smartphones: breathing and devices influences doi: 10.1007/978-3-319-11128-5_66 – volume: 15 start-page: 70 year: 1967 ident: boe-9-2-873-R33 publication-title: IEEE Trans. Audio Electroacoust. doi: 10.1109/TAU.1967.1161901 – volume: 25 start-page: 120 year: 2000 ident: boe-9-2-873-R46 publication-title: Dr. Dobbs J. Softw. Tools Prof. Program. – volume: 2 start-page: 205 year: 1981 ident: boe-9-2-873-R21 publication-title: Clin. Phys. Physiol. Meas. doi: 10.1088/0143-0815/2/3/004 – volume: 139 start-page: 021102 year: 2017 ident: boe-9-2-873-R65 publication-title: J. Mech. Des. doi: 10.1115/1.4035428 – volume: 16 start-page: 21434 year: 2008 ident: boe-9-2-873-R2 publication-title: Opt. Express doi: 10.1364/OE.16.021434 – volume: 63 start-page: 1974 year: 2016 ident: boe-9-2-873-R17 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2508602 – volume: 20 start-page: 048002 year: 2015 ident: boe-9-2-873-R8 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.20.4.048002 – volume: 1 start-page: 125 year: 1979 ident: boe-9-2-873-R40 publication-title: Non-invasive Physiol. Meas. – volume: 37 start-page: N27 year: 2016 ident: boe-9-2-873-R63 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/37/5/N27 – volume: 8 start-page: 141 year: 1966 ident: boe-9-2-873-R41 publication-title: Adv. Clin. Chem. doi: 10.1016/S0065-2423(08)60414-X |
SSID | ssj0000447038 |
Score | 2.4000323 |
Snippet | The authors of this work present a real-time measurement of heart rate across different lighting conditions and motion categories. This is an advancement over... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 873 |
Title | Bounded Kalman filter method for motion-robust, non-contact heart rate estimation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29552419 https://www.proquest.com/docview/2015415090 https://pubmed.ncbi.nlm.nih.gov/PMC5854085 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSAgeEIxbuUxGgqeQksTOxY9jGkyggZCK1LfIsR212tZWXSohfj3n2M6lWycBL1GVWE7l7-vpOfY55yPkbaRVoaMqCTMt85CbLA6LTBRhWulYmTzSsW08f_otO_nJv0zTaS_GaatLmmqsfu-sK_kfVOEe4IpVsv-AbDcp3IDPgC9cAWG4_hXGH1ETCTzGr_Ict-LrOR59e1Fomz_oNHrC9bLauNoOCPZDzE7HykjUsm4CbBURYKuNix6j9pDXluZbFJcr287Z_Fp1KRtoT9fyTF7O3M7yWTObBzZjOzhcb3YkbhyhkoH2e61-oyEu2tzk1h6Bc5CFeeQUdsZmxz1vUMWAN8nAOBZOtOSa0WYZx1T078dj7B0aXRkGS766sAAmIk3B4RD9X1eXUNg-uk3uJBAvoJTF52ncbbZFnINls-qE7Rf2RRDw7g_DN2NzaD_XtqdyLfy4mkU7cEsmD8kDH0_QQ0eOR-SWWeyT-4Muk_vk7qnPn3hMfnjGUMcY6hhDHWMoMIZuMeY9HfCFWr5Q5Avt-fKETD4dT45OQi-qESpW8CZkdcpyBa4Rr0XK0sjU3IiaFeB5cxUrFVWVkjI1OtdcZDLOc61yngouZJ1Gkj0le_Bq85zQRCZMGlYXEJTyrGBFjULmscZiZyZ1MiJBu36l8g3nUffkvLSnqBkvYeFLUbqFH5F33eiVa7Ryw7g3LRQlWEI83pILs9xclgmGAxDfiGhEnjlouplaTEck3wKtG4Bd1refLOYz220d4mnsAvjixjlfknv9z-UV2WvWG_MaPNWmOrA7PAeWi38AATeS-A |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bounded+Kalman+filter+method+for+motion-robust%2C+non-contact+heart+rate+estimation&rft.jtitle=Biomedical+optics+express&rft.au=Prakash%2C+Sakthi+Kumar+Arul&rft.au=Tucker%2C+Conrad+S&rft.date=2018-02-01&rft.issn=2156-7085&rft.eissn=2156-7085&rft.volume=9&rft.issue=2&rft.spage=873&rft_id=info:doi/10.1364%2FBOE.9.000873&rft_id=info%3Apmid%2F29552419&rft.externalDocID=29552419 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-7085&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-7085&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-7085&client=summon |