Bounded Kalman filter method for motion-robust, non-contact heart rate estimation

The authors of this work present a real-time measurement of heart rate across different lighting conditions and motion categories. This is an advancement over existing remote Photo Plethysmography (rPPG) methods that require a static, controlled environment for heart rate detection, making them impr...

Full description

Saved in:
Bibliographic Details
Published inBiomedical optics express Vol. 9; no. 2; pp. 873 - 897
Main Authors Prakash, Sakthi Kumar Arul, Tucker, Conrad S.
Format Journal Article
LanguageEnglish
Published United States Optical Society of America 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The authors of this work present a real-time measurement of heart rate across different lighting conditions and motion categories. This is an advancement over existing remote Photo Plethysmography (rPPG) methods that require a static, controlled environment for heart rate detection, making them impractical for real-world scenarios wherein a patient may be in motion, or remotely connected to a healthcare provider through telehealth technologies. The algorithm aims to minimize motion artifacts such as blurring and noise due to head movements (uniform, random) by employing i) a blur identification and denoising algorithm for each frame and ii) a bounded Kalman filter technique for motion estimation and feature tracking. A case study is presented that demonstrates the feasibility of the algorithm in non-contact estimation of the pulse rate of subjects performing everyday head and body movements. The method in this paper outperforms state of the art rPPG methods in heart rate detection, as revealed by the benchmarked results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2156-7085
2156-7085
DOI:10.1364/BOE.9.000873