Crosstalk Prediction of Single- and Double-Walled Carbon-Nanotube (SWCNT/DWCNT) Bundle Interconnects
The crosstalk effects in single- and double-walled carbon-nanotube (SWCNT and DWCNT) bundle-interconnect architectures are investigated in this paper. Some modified equivalent-circuit models are proposed for both SWCNT and DWCNT bundles, where capacitive couplings between adjacent bundles are incorp...
Saved in:
Published in | IEEE transactions on electron devices Vol. 56; no. 4; pp. 560 - 568 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.04.2009
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The crosstalk effects in single- and double-walled carbon-nanotube (SWCNT and DWCNT) bundle-interconnect architectures are investigated in this paper. Some modified equivalent-circuit models are proposed for both SWCNT and DWCNT bundles, where capacitive couplings between adjacent bundles are incorporated. These circuit models are further used to predict the performance of SWCNT and DWCNT bundle interconnects in comparison with the Cu wire counterpart at all interconnect levels for advanced future technology generations. It is found that, compared with the SWCNT bundle, the DWCNT bundle interconnect can lead to a reduction of crosstalk-induced time delay, which will be more significant with increasing bundle length, while the peak voltage of the crosstalk-induced glitch in SWCNT and DWCNT bundle interconnects is in the same order as that of Cu wires. Due to the improvement in time delay, it is numerically confirmed that the DWCNT bundle interconnect will be more suitable for the next generation of interconnect technology as compared with the SWCNT bundle counterpart. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2009.2014429 |