Impact of the Synthetic Scaffold Strategy on the Metabolic Pathway Engineering

For the development of the efficient bio-refinery process or biochemical producer, metabolic engineering has become an attractive choice recently. However, engineered metabolic pathways often suffer from flux imbalances due to a lack of corresponding regulatory mechanisms associated with natural met...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioprocess engineering Vol. 28; no. 3; pp. 379 - 385
Main Authors Tran, Kim-Ngan T., Kumaravel, Ashokkumar, Hong, Soon Ho
Format Journal Article
LanguageEnglish
Published Seoul The Korean Society for Biotechnology and Bioengineering 01.06.2023
Springer Nature B.V
한국생물공학회
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For the development of the efficient bio-refinery process or biochemical producer, metabolic engineering has become an attractive choice recently. However, engineered metabolic pathways often suffer from flux imbalances due to a lack of corresponding regulatory mechanisms associated with natural metabolism. The interaction among different enzymes within a metabolic pathway plays an important role in regulating the efficiency of metabolic processes. Consequently, the creation of protein scaffolds has helped with the spatial co-localization of proteins in metabolic engineering. Research on protein scaffolds indicated scaffold systems may enhance metabolic productivity further. In this review, the specificity, selectivity, and regulatory mechanisms of protein-protein interactions are discussed in the context of the important effects that they exert on various biological processes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1226-8372
1976-3816
DOI:10.1007/s12257-022-0350-z