Aggregation behaviour of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa in aqueous media
The process of micelle formation, along with the formation of higher order aggregates, is described for a dirhamnolipid extracellular biosurfactant secreted by Pseudomonas aeruginosa. As determined by surface tension measurements, at pH 7.4 the CMC of dirhamnolipid is 0.110 mM, whereas at pH 4.0 it...
Saved in:
Published in | Journal of colloid and interface science Vol. 307; no. 1; pp. 246 - 253 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
San Diego, CA
Elsevier Inc
01.03.2007
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The process of micelle formation, along with the formation of higher order aggregates, is described for a dirhamnolipid extracellular biosurfactant secreted by
Pseudomonas aeruginosa. As determined by surface tension measurements, at pH 7.4 the CMC of dirhamnolipid is 0.110 mM, whereas at pH 4.0 it falls to 0.010 mM, indicating that the negatively charged diRL has a much higher CMC value than the neutral species. Centrifugation and dynamic light scattering measurements show formation of larger aggregates at concentrations above the CMC. These aggregates have been shown by electron microscopy to be mainly multilamellar vesicles of heterogeneous size. X-ray scattering gave a value of 32 Å for the interlamellar repeat distance of these vesicles. Taking into account the experimental data, a molecular modelling of the dirhamnolipid moiety has been carried out, which details the size of the hydrophilic and hydrophobic portions, and suggests the possible intermolecular interactions responsible for the stabilisation of dirhamnolipid aggregates. The relevance of this aggregation behaviour is discussed with respect to the molecular basis of its activities.
Molecular modelling of dirhamnolipid and intermolecular interactions. By stablishing a high number of hydrogen bonds, dirhamnolipids are able to selfaggregate and form lamellar vesicles. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2006.11.041 |