Transilient Response to Acetone Gas Using the Interlocking p+n Field-Effect Transistor Circuit
Low concentration acetone gas detection is significantly important for diabetes diagnosis as 1.8⁻10 ppm of acetone exists in exhaled breath from diabetes patients. A new interlocking p+n field-effect transistor (FET) circuit has been proposed for Mn-doped ZnO nanoparticles (MZO) to detect the aceton...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 18; no. 6; p. 1914 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
12.06.2018
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Low concentration acetone gas detection is significantly important for diabetes diagnosis as 1.8⁻10 ppm of acetone exists in exhaled breath from diabetes patients. A new interlocking p+n field-effect transistor (FET) circuit has been proposed for Mn-doped ZnO nanoparticles (MZO) to detect the acetone gas at low concentration, especially close to 1.8 ppm. It is noteworthy that MZO in this interlocking amplification circuit shows a low voltage signal of <0.3 V to the acetone <2 ppm while it displays a transilient response with voltage signal >4.0 V to >2 ppm acetone. In other words, the response to acetone from 1 ppm to 2 ppm increases by ~1233%, which is competent to separate diabetic patients from healthy people. Moreover, the response to 2 ppm acetone is hardly influenced by high relative humidity of 85%. In the meanwhile, MZO in this interlocking circuit possesses a high acetone selectivity compared to formaldehyde, acetaldehyde, toluene and ethanol, suggesting a promising technology for the widespread qualitative screening of diabetes. Importantly, this interlocking circuit is also applicable to other types of metal oxide semiconductor gas sensors. The resistance jump of p- and n-FETs induced by the change of their gate voltages is deemed to make this interlocking circuit produce the transilient response. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s18061914 |