Multifunctional Nacre-Like Nanocomposite Papers for Electromagnetic Interference Shielding via Heterocyclic Aramid/MXene Template-Assisted In-Situ Polypyrrole Assembly
Highlights The large-scale, high-strength, super-tough, and multifunctional nacre-like heterocyclic aramid (HA)/MXene@polypyrrole (PPy) (HMP) nanocomposite papers were fabricated using the in-situ assembly of PPy onto the HA/MXene hydrogel template. The "brick-and-mortar" layered structure...
Saved in:
Published in | Nano-micro letters Vol. 17; no. 1; pp. 53 - 18 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2025
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Highlights
The large-scale, high-strength, super-tough, and multifunctional nacre-like heterocyclic aramid (HA)/MXene@polypyrrole (PPy) (HMP) nanocomposite papers were fabricated using the
in-situ
assembly of PPy onto the HA/MXene hydrogel template.
The "brick-and-mortar" layered structure and abundant hydrogen-bonding interactions among MXene, PPy, and HA respond cooperatively to external stress and effectively increase the mechanical properties of HMP nanocomposite papers.
The templating effect from HA/MXene was utilized to guide the assembly of conducting polymers, leading to high electrical conductivity and outstanding electromagnetic interference shielding performance.
Robust, ultra-flexible, and multifunctional MXene-based electromagnetic interference (EMI) shielding nanocomposite films exhibit enormous potential for applications in artificial intelligence, wireless telecommunication, and portable/wearable electronic equipment. In this work, a nacre-inspired multifunctional heterocyclic aramid (HA)/MXene@polypyrrole (PPy) (HMP) nanocomposite paper with large-scale, high strength, super toughness, and excellent tolerance to complex conditions is fabricated through the strategy of HA/MXene hydrogel template-assisted
in-situ
assembly of PPy. Benefiting from the "brick-and-mortar" layered structure and the strong hydrogen-bonding interactions among MXene, HA, and PPy, the paper exhibits remarkable mechanical performances, including high tensile strength (309.7 MPa), outstanding toughness (57.6 MJ m
−3
), exceptional foldability, and structural stability against ultrasonication. By using the template effect of HA/MXene to guide the assembly of conductive polymers, the synthesized paper obtains excellent electronic conductivity. More importantly, the highly continuous conductive path enables the nanocomposite paper to achieve a splendid EMI shielding effectiveness (EMI SE) of 54.1 dB at an ultra-thin thickness (25.4 μm) and a high specific EMI SE of 17,204.7 dB cm
2
g
−1
. In addition, the papers also have excellent applications in electromagnetic protection, electro-/photothermal de-icing, thermal therapy, and fire safety. These findings broaden the ideas for developing high-performance and multifunctional MXene-based films with enormous application potential in EMI shielding and thermal management. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2311-6706 2150-5551 2150-5551 |
DOI: | 10.1007/s40820-024-01552-9 |