On similarity invariants of matrix commutators

We study the possible eigenvalues, ranks and numbers of nonconstant invariant polynomials of [⋯[[A,X 1],X 2],…,X k] , when A is a fixed matrix and X 1,…,X k vary. Then we generalize these results in the following way. Let g(X 1,…, X k) be any expression obtained from distinct noncommuting variables...

Full description

Saved in:
Bibliographic Details
Published inLinear algebra and its applications Vol. 335; no. 1; pp. 81 - 93
Main Authors Furtado, Susana, Martins, Enide Andrade, Silva, Fernando C.
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 15.09.2001
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study the possible eigenvalues, ranks and numbers of nonconstant invariant polynomials of [⋯[[A,X 1],X 2],…,X k] , when A is a fixed matrix and X 1,…,X k vary. Then we generalize these results in the following way. Let g(X 1,…, X k) be any expression obtained from distinct noncommuting variables X 1,…,X k by applying recursively the Lie product [· ,·] and without using the same variable twice. We study the possible eigenvalues, ranks and numbers of nonconstant invariant polynomials of g(X 1,…,X k) when one of the variables X 1,…,X k takes a fixed value in F n×n and the others vary.
ISSN:0024-3795
1873-1856
DOI:10.1016/S0024-3795(00)00334-7