Interactions between human norovirus and intestinal microbiota/microbes: A scoping review

Human norovirus (HuNoV) is an important foodborne virus, which causes non-bacterial acute gastroenteritis and is associated with a high disease burden. Recently, researchers have focus on the interaction between HuNoV and intestinal microbiota/microbes and engaged in studies investigating the implic...

Full description

Saved in:
Bibliographic Details
Published inFood microbiology Vol. 119; p. 104456
Main Authors Yang, Yaqi, An, Ran, Lyu, Chenang, Wang, Dapeng
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2024
Subjects
Online AccessGet full text
ISSN0740-0020
1095-9998
1095-9998
DOI10.1016/j.fm.2023.104456

Cover

Abstract Human norovirus (HuNoV) is an important foodborne virus, which causes non-bacterial acute gastroenteritis and is associated with a high disease burden. Recently, researchers have focus on the interaction between HuNoV and intestinal microbiota/microbes and engaged in studies investigating the implications of this interaction on HuNoV infection. However, the interaction mechanism and the implication of this interaction on host remain obscure. Current scoping review aimed to systematically investigate the interaction between HuNoV and intestinal microbiota, as well as their implication on HuNoV or HuNoV related symptoms. We found that HuNoV could bind to intestinal microbes and affect the intestinal microbial composition, diversity, and microbial gene expression. In reverse, intestinal microbes could affect HuNoV infectivity, although demonstrating contradictory effects (i.e., promote or inhibit HuNoV replication). These contradictory effects existed among microbes, in part, could be attributed to the differences among microbes (histo-blood group antigens and/or other small molecule substances). Results of current scoping review could assist in the selection and isolation of potential microbial candidates to prevent and/or alleviate HuNoV related symptoms. •Human norovirus (HuNoV) infection leads to alterations in intestinal microbiota.•HuNoV infected subjects with different microbiota compositions exhibit dissimilar clinical symptoms.•Intestinal microbes exhibited contradictory effects on HuNoV infection.•Intestinal microbes could bind to HuNoV via bacterial originated substances.
AbstractList Human norovirus (HuNoV) is an important foodborne virus, which causes non-bacterial acute gastroenteritis and is associated with a high disease burden. Recently, researchers have focus on the interaction between HuNoV and intestinal microbiota/microbes and engaged in studies investigating the implications of this interaction on HuNoV infection. However, the interaction mechanism and the implication of this interaction on host remain obscure. Current scoping review aimed to systematically investigate the interaction between HuNoV and intestinal microbiota, as well as their implication on HuNoV or HuNoV related symptoms. We found that HuNoV could bind to intestinal microbes and affect the intestinal microbial composition, diversity, and microbial gene expression. In reverse, intestinal microbes could affect HuNoV infectivity, although demonstrating contradictory effects (i.e., promote or inhibit HuNoV replication). These contradictory effects existed among microbes, in part, could be attributed to the differences among microbes (histo-blood group antigens and/or other small molecule substances). Results of current scoping review could assist in the selection and isolation of potential microbial candidates to prevent and/or alleviate HuNoV related symptoms.Human norovirus (HuNoV) is an important foodborne virus, which causes non-bacterial acute gastroenteritis and is associated with a high disease burden. Recently, researchers have focus on the interaction between HuNoV and intestinal microbiota/microbes and engaged in studies investigating the implications of this interaction on HuNoV infection. However, the interaction mechanism and the implication of this interaction on host remain obscure. Current scoping review aimed to systematically investigate the interaction between HuNoV and intestinal microbiota, as well as their implication on HuNoV or HuNoV related symptoms. We found that HuNoV could bind to intestinal microbes and affect the intestinal microbial composition, diversity, and microbial gene expression. In reverse, intestinal microbes could affect HuNoV infectivity, although demonstrating contradictory effects (i.e., promote or inhibit HuNoV replication). These contradictory effects existed among microbes, in part, could be attributed to the differences among microbes (histo-blood group antigens and/or other small molecule substances). Results of current scoping review could assist in the selection and isolation of potential microbial candidates to prevent and/or alleviate HuNoV related symptoms.
Human norovirus (HuNoV) is an important foodborne virus, which causes non-bacterial acute gastroenteritis and is associated with a high disease burden. Recently, researchers have focus on the interaction between HuNoV and intestinal microbiota/microbes and engaged in studies investigating the implications of this interaction on HuNoV infection. However, the interaction mechanism and the implication of this interaction on host remain obscure. Current scoping review aimed to systematically investigate the interaction between HuNoV and intestinal microbiota, as well as their implication on HuNoV or HuNoV related symptoms. We found that HuNoV could bind to intestinal microbes and affect the intestinal microbial composition, diversity, and microbial gene expression. In reverse, intestinal microbes could affect HuNoV infectivity, although demonstrating contradictory effects (i.e., promote or inhibit HuNoV replication). These contradictory effects existed among microbes, in part, could be attributed to the differences among microbes (histo-blood group antigens and/or other small molecule substances). Results of current scoping review could assist in the selection and isolation of potential microbial candidates to prevent and/or alleviate HuNoV related symptoms.
Human norovirus (HuNoV) is an important foodborne virus, which causes non-bacterial acute gastroenteritis and is associated with a high disease burden. Recently, researchers have focus on the interaction between HuNoV and intestinal microbiota/microbes and engaged in studies investigating the implications of this interaction on HuNoV infection. However, the interaction mechanism and the implication of this interaction on host remain obscure. Current scoping review aimed to systematically investigate the interaction between HuNoV and intestinal microbiota, as well as their implication on HuNoV or HuNoV related symptoms. We found that HuNoV could bind to intestinal microbes and affect the intestinal microbial composition, diversity, and microbial gene expression. In reverse, intestinal microbes could affect HuNoV infectivity, although demonstrating contradictory effects (i.e., promote or inhibit HuNoV replication). These contradictory effects existed among microbes, in part, could be attributed to the differences among microbes (histo-blood group antigens and/or other small molecule substances). Results of current scoping review could assist in the selection and isolation of potential microbial candidates to prevent and/or alleviate HuNoV related symptoms. •Human norovirus (HuNoV) infection leads to alterations in intestinal microbiota.•HuNoV infected subjects with different microbiota compositions exhibit dissimilar clinical symptoms.•Intestinal microbes exhibited contradictory effects on HuNoV infection.•Intestinal microbes could bind to HuNoV via bacterial originated substances.
ArticleNumber 104456
Author An, Ran
Lyu, Chenang
Wang, Dapeng
Yang, Yaqi
Author_xml – sequence: 1
  givenname: Yaqi
  surname: Yang
  fullname: Yang, Yaqi
– sequence: 2
  givenname: Ran
  surname: An
  fullname: An, Ran
– sequence: 3
  givenname: Chenang
  surname: Lyu
  fullname: Lyu, Chenang
– sequence: 4
  givenname: Dapeng
  surname: Wang
  fullname: Wang, Dapeng
  email: dapengwang@sjtu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38225056$$D View this record in MEDLINE/PubMed
BookMark eNqFkTFv3SAURlGVqnlJuneqGLv45QIG29miqG0iRcqSDpkQxtctTza8Ak6Uf1-enHSo1HYCpHPQvd93Qo588EjIBwZbBkyd77bjvOXARXnWtVRvyIZBJ6uu69ojsoGmhgqAwzE5SWkHwJgU3TtyLFrOJUi1IQ83PmM0NrvgE-0xPyF6-mOZjac-xPDo4pKo8QN1BUzZeTPR2dkYeheyOV-vmC7oJU027J3_TiM-Onw6I29HMyV8_3Kekm9fPt9fXVe3d19vri5vKytakStsAVWDUjZGddgK1Y8NY7YZjEA-DiCNEdJwJUarrJHY8xqt7FtEJRiYRpyST-u_-xh-LmVEPbtkcZqMx7AkLcrOrKlbLv6L8o6VOaBRbUE_vqBLP-Og99HNJj7r1-QKACtQ9k8p4vgbYaAP5eidHmd9KEev5RRF_aFYl80h-RyNm_4lXqwilhxLtlEn69BbHFxEm_UQ3N_lXy1_qCw
CitedBy_id crossref_primary_10_1097_QCO_0000000000001053
crossref_primary_10_1038_s41598_025_88312_w
crossref_primary_10_1016_j_fm_2024_104591
Cites_doi 10.1086/339883
10.1007/s00705-017-3494-y
10.3389/fmicb.2016.01699
10.1016/j.foodcont.2019.106881
10.1016/j.ijfoodmicro.2012.12.016
10.1371/journal.ppat.1008009
10.1128/AEM.04096-15
10.3390/v15030631
10.1371/journal.pone.0048224
10.1073/pnas.1605575113
10.1016/j.ijfoodmicro.2019.108492
10.1007/s12560-022-09518-z
10.1128/JVI.01060-13
10.1128/AEM.00790-21
10.1128/mBio.02634-20
10.3389/fmicb.2021.731379
10.1016/j.jhin.2011.04.029
10.1016/j.virol.2008.08.047
10.3390/v14081596
10.3390/v14071395
10.1016/S0195-6701(99)90037-3
10.1093/infdis/jiu037
10.1126/science.aaf5211
10.1038/srep25017
10.1186/s13104-019-4669-2
10.1016/j.ijfoodmicro.2023.110369
10.3945/jn.116.240754
10.1128/JVI.00809-06
10.1038/srep45559
10.1016/j.ijid.2021.08.024
10.1038/nm860
10.1371/journal.pone.0148028
10.3389/fimmu.2022.909949
10.1126/science.1257147
10.1186/s13643-020-01542-z
10.1016/j.nut.2020.110812
10.3390/ijms22179474
10.1007/s12560-019-09410-3
10.1002/jev2.12172
10.1128/JVI.76.23.12335-12343.2002
10.1038/s41564-019-0602-7
10.1099/jgv.0.001336
10.1371/journal.pone.0173124
10.1136/gutjnl-2019-320204
10.3892/br.2016.585
10.4049/jimmunol.1501705
10.1128/mSphere.01136-20
10.1073/pnas.1019378108
10.3390/ijms231810643
10.1128/JVI.00317-16
10.1186/s13568-020-01066-8
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.fm.2023.104456
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Biology
EISSN 1095-9998
ExternalDocumentID 38225056
10_1016_j_fm_2023_104456
S0740002023002435
Genre Journal Article
Scoping Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AAAJQ
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATLK
AAXKI
AAXUO
AAYJJ
ABFRF
ABGRD
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADFGL
ADHUB
ADMUD
ADNMO
ADQTV
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CJTIS
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMG
HVGLF
HZ~
IHE
J1W
KOM
LG5
LUGTX
LW8
LZ5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSA
SSI
SSZ
T5K
UBH
UNMZH
WUQ
XPP
Y6R
ZMT
ZU3
~G-
~KM
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
EFLBG
7S9
L.6
ID FETCH-LOGICAL-c383t-e80e67e557a69e836bf711c7da3e2fd05aa35a263fc6ca5eb24ec5b8ee6310a73
IEDL.DBID AIKHN
ISSN 0740-0020
1095-9998
IngestDate Fri Sep 05 11:03:57 EDT 2025
Fri Sep 05 05:37:36 EDT 2025
Mon Jul 21 06:02:33 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
Tue Jul 01 01:11:44 EDT 2025
Sat Jan 18 16:04:49 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Murine norovirus
HuNoV
Human norovirus
EPS
HBGAs
LAB
Virus-like particles
VLPs
Intestinal microbes
MNV
CMVs
OMVs
Virus-bacteria interaction
AGE
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c383t-e80e67e557a69e836bf711c7da3e2fd05aa35a263fc6ca5eb24ec5b8ee6310a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 38225056
PQID 2915570768
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153174823
proquest_miscellaneous_2915570768
pubmed_primary_38225056
crossref_primary_10_1016_j_fm_2023_104456
crossref_citationtrail_10_1016_j_fm_2023_104456
elsevier_sciencedirect_doi_10_1016_j_fm_2023_104456
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
2024-May
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Food microbiology
PublicationTitleAlternate Food Microbiol
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Grau, Zhu, Peterson, Helm, Philip, Phillips, Hernandez, Turula, Frasse, Graziano, Wilen, Wobus, Baldridge, Karst (bib15) 2020; 5
Furuya, Nakajima, Sasaki, Urita (bib13) 2016; 4
Zhuang, Jin, Yan, Cheng (bib56) 2017; 162
Li, Gao, Xue, Shang, Cai, Xie, Jiang, Chen, Zhang, Wang, Chen, Ding, Wu (bib27) 2022; 9
Ettayebi, Tenge, Cortes-Penfield, Crawford, Neill, Zeng, Yu, Ayyar, Burrin, Ramani, Atmar, Estes (bib12) 2021; 6
Dong Joo, Day, Soontag, Daseul, Changsun (bib9) 2020; 109
Rodríguez-Díaz, García-Mantrana, Vila-Vicent, Gozalbo-Rovira, Buesa, Monedero, Collado (bib40) 2017; 7
Wen, Duffy (bib51) 2017; 147
Liu, Zhang, Liao, Zou, Tang, Tian, Young, Wu, Wang (bib30) 2020; 317
Sharma, Hagbom, Carlsson, Ohd, Insulander, Eriksson, Simonsson, Widerstrom, Nordgren (bib43) 2020; 12
Uchiyama, Chassaing, Zhang, Gewirtz (bib46) 2014; 210
Lin, Yang, Lin, Lu, Tsai, Lu, Chen, Chen (bib28) 2022; 17
Almand, Moore, Jaykus (bib1) 2019; 12
Wei, Wen, Xian (bib50) 2021; 22
Santiso-Bellon, Gozalbo-Rovira, Buesa, Rubio-del-Campo, Pena-Gil, Navarro-Lleo, Carcamo-Calvo, Yebra, Monedero, Rodriguez-Diaz (bib41) 2022; 23
Soorneedi, Moore (bib44) 2022; 48
Miura, Sano, Suenaga, Yoshimura, Fuzawa, Nakagomi, Nakagomi, Okabe (bib34) 2013; 87
Weersma, Zhernakova, Fu (bib49) 2020; 69
Vandenplas, Carnielli, Ksiazyk, Luna, Migacheva, Mosselmans, Picaud, Possner, Singhal, Wabitsch (bib48) 2020; 78
Clooney, Fouhy, Sleator, O'Driscoll, Stanton, Cotter, Claesson (bib8) 2016; 11
Martin, Emilse, Pereyra, Virginia, Sanchez, Sant’Ana, Angelica (bib33) 2022; 14
Baugher, Jaykus (bib4) 2015; 1133
Gao, Esseili, Lu, Saif, Wang (bib14) 2016; 82
Hutson, Atmar, Graham, Estes (bib18) 2002; 185
Paulmann, Steinmann, Becker, Bischoff, Steinmann, Steinmann (bib38) 2011; 79
Lei, Samuel, Twitchell, Bui, Ramesh, Wen, Weiss, Li, Yang, Jiang, Yuan (bib24) 2016; 6
Van Dycke, Ny, Conceicao-Neto, Maes, Hosmillo, Cuvry, Goodfellow, Nogueira, Verbeken, Matthijnssens, de Witte, Neyts, Rocha-Pereira (bib47) 2019; 15
Almand, Moore, Outlaw, Jaykus (bib2) 2017; 12
Nelson, Walk, Taube, Taniuchi, Houpt, Wobus, Young (bib36) 2012; 7
Ichinohe, Pang, Kumamoto, Peaper, Ho, Murray, Iwasaki (bib19) 2011; 108
Haga, Fujimoto, Takai-Todaka, Miki, Doan, Murakami, Yokoyama, Murata, Nakanishi, Katayama (bib16) 2016; 113
Zhang, Liu, Wu, Wang (bib55) 2021; 87
Cannon, Seabolt, Xu, Montmayeur, Suh, Diez-Valcarce, Bucardo, Becker-Dreps, Vinjé (bib6) 2022; 14
Mosby, Bhar, Phillips, Edelmann, Jones (bib35) 2022; 11
Rethlefsen, Kirtley, Waffenschmidt, Ayala, Moher, Page, Koffel, Group (bib39) 2021; 10
Li, Ye, Neetoo, Golovan, Chen (bib26) 2013; 162
Bajinka, Tan, Abdelhalim, Ozdemir, Qiu (bib3) 2020; 10
Lei, Ramesh, Twitchell, Wen, Bui, Weiss, Yang, Kocher, Li, Giri-Rachman, Van Trang, Jiang, Ryan, Yuan (bib23) 2016; 7
Long, Mosby, Jones (bib31) 2022; 14
Tan, Fang, Chachiyo, Xia, Huang, Fang, Jiang, Jiang (bib45) 2008; 382
Xu, Liu, Chen, Zou, Jin, Zhang, Sheng, Liao, Hu, Cheng (bib53) 2021; 12
Lindesmith, Moe, Marionneau, Ruvoen, Jiang, Lindblad, Stewart, Lependu, Baric (bib29) 2003; 9
Ettayebi, Crawford, Murakami, Broughman, Karandikar, Tenge, Neill, Blutt, Zeng, Qu, Kou, Opekun, Burrin, Graham, Ramani, Atmar, Estes (bib11) 2016; 353
Lee, Ko (bib22) 2016; 6
Yu, Han, Yang, Zhang, Chen, Yu, Wang (bib54) 2023; 406
Kandasamy, Vlasova, Fischer, Kumar, Chattha, Rauf, Shao, Langel, Rajashekara, Saif (bib21) 2016; 196
Bhar, Zhao, Bartel, Sterchele, Del Mazo, Emerson, Edelmann, Jones (bib5) 2022; 13
Patin, Peña-Gonzalez, Hatt, Moe, Kirby, Konstantinidis (bib37) 2020; 11
Schroten, Hanisch, Hansman (bib42) 2016; 90
Cheetham, Souza, Meulia, Grimes, Han, Saif (bib7) 2006; 80
Lei, Twitchell, Ramesh, Bui, Majette, Tin, Avery, Arango-Argoty, Zhang, Becker-Dreps, Azcarate-Peril, Jiang, Yuan (bib25) 2019; 100
Harrington, Lindesmith, Yount, Moe, Baric (bib17) 2002; 76
Lyu, Li, Shi, An, Wang, Luo, Wang (bib32) 2023; 15
Doultree, Druce, Birch, Bowden, Marshall (bib10) 1999; 41
Xiong, Li, Li, Yang, Shang, He, Liu, Luo, Xie (bib52) 2021; 111
Jones, Watanabe, Zhu, Graves, Keyes, Grau, Gonzalez-Hernandez, Iovine, Wobus, Vinjé, Tibbetts, Wallet, Karst (bib20) 2014; 346
Lindesmith (10.1016/j.fm.2023.104456_bib29) 2003; 9
Tan (10.1016/j.fm.2023.104456_bib45) 2008; 382
Almand (10.1016/j.fm.2023.104456_bib1) 2019; 12
Dong Joo (10.1016/j.fm.2023.104456_bib9) 2020; 109
Nelson (10.1016/j.fm.2023.104456_bib36) 2012; 7
Lee (10.1016/j.fm.2023.104456_bib22) 2016; 6
Bajinka (10.1016/j.fm.2023.104456_bib3) 2020; 10
Harrington (10.1016/j.fm.2023.104456_bib17) 2002; 76
Uchiyama (10.1016/j.fm.2023.104456_bib46) 2014; 210
Long (10.1016/j.fm.2023.104456_bib31) 2022; 14
Ichinohe (10.1016/j.fm.2023.104456_bib19) 2011; 108
Baugher (10.1016/j.fm.2023.104456_bib4) 2015; 1133
Rodríguez-Díaz (10.1016/j.fm.2023.104456_bib40) 2017; 7
Li (10.1016/j.fm.2023.104456_bib27) 2022; 9
Santiso-Bellon (10.1016/j.fm.2023.104456_bib41) 2022; 23
Lei (10.1016/j.fm.2023.104456_bib25) 2019; 100
Furuya (10.1016/j.fm.2023.104456_bib13) 2016; 4
Van Dycke (10.1016/j.fm.2023.104456_bib47) 2019; 15
Ettayebi (10.1016/j.fm.2023.104456_bib12) 2021; 6
Almand (10.1016/j.fm.2023.104456_bib2) 2017; 12
Cheetham (10.1016/j.fm.2023.104456_bib7) 2006; 80
Mosby (10.1016/j.fm.2023.104456_bib35) 2022; 11
Schroten (10.1016/j.fm.2023.104456_bib42) 2016; 90
Weersma (10.1016/j.fm.2023.104456_bib49) 2020; 69
Sharma (10.1016/j.fm.2023.104456_bib43) 2020; 12
Miura (10.1016/j.fm.2023.104456_bib34) 2013; 87
Zhuang (10.1016/j.fm.2023.104456_bib56) 2017; 162
Haga (10.1016/j.fm.2023.104456_bib16) 2016; 113
Xu (10.1016/j.fm.2023.104456_bib53) 2021; 12
Gao (10.1016/j.fm.2023.104456_bib14) 2016; 82
Ettayebi (10.1016/j.fm.2023.104456_bib11) 2016; 353
Lei (10.1016/j.fm.2023.104456_bib23) 2016; 7
Paulmann (10.1016/j.fm.2023.104456_bib38) 2011; 79
Patin (10.1016/j.fm.2023.104456_bib37) 2020; 11
Soorneedi (10.1016/j.fm.2023.104456_bib44) 2022; 48
Wei (10.1016/j.fm.2023.104456_bib50) 2021; 22
Lin (10.1016/j.fm.2023.104456_bib28) 2022; 17
Vandenplas (10.1016/j.fm.2023.104456_bib48) 2020; 78
Doultree (10.1016/j.fm.2023.104456_bib10) 1999; 41
Grau (10.1016/j.fm.2023.104456_bib15) 2020; 5
Wen (10.1016/j.fm.2023.104456_bib51) 2017; 147
Bhar (10.1016/j.fm.2023.104456_bib5) 2022; 13
Li (10.1016/j.fm.2023.104456_bib26) 2013; 162
Lyu (10.1016/j.fm.2023.104456_bib32) 2023; 15
Kandasamy (10.1016/j.fm.2023.104456_bib21) 2016; 196
Cannon (10.1016/j.fm.2023.104456_bib6) 2022; 14
Rethlefsen (10.1016/j.fm.2023.104456_bib39) 2021; 10
Lei (10.1016/j.fm.2023.104456_bib24) 2016; 6
Zhang (10.1016/j.fm.2023.104456_bib55) 2021; 87
Liu (10.1016/j.fm.2023.104456_bib30) 2020; 317
Martin (10.1016/j.fm.2023.104456_bib33) 2022; 14
Hutson (10.1016/j.fm.2023.104456_bib18) 2002; 185
Xiong (10.1016/j.fm.2023.104456_bib52) 2021; 111
Yu (10.1016/j.fm.2023.104456_bib54) 2023; 406
Jones (10.1016/j.fm.2023.104456_bib20) 2014; 346
Clooney (10.1016/j.fm.2023.104456_bib8) 2016; 11
References_xml – volume: 196
  start-page: 1780
  year: 2016
  end-page: 1789
  ident: bib21
  article-title: Differential effects of Escherichia coli Nissle and Lactobacillus rhamnosus Strain GG on human rotavirus binding, infection, and B cell immunity
  publication-title: J. Immunol.
– volume: 317
  year: 2020
  ident: bib30
  article-title: Culturable bacteria resident on lettuce might contribute to accumulation of human noroviruses
  publication-title: Int. J. Food Microbiol.
– volume: 17
  year: 2022
  ident: bib28
  article-title: Clinical significance and intestinal microbiota composition in immunocompromised children with norovirus gastroenteritis
  publication-title: PLoS One
– volume: 6
  year: 2016
  ident: bib22
  article-title: Antiviral effect of Vitamin A on norovirus infection via modulation of the gut microbiome
  publication-title: Sci. Rep.
– volume: 111
  start-page: 76
  year: 2021
  end-page: 84
  ident: bib52
  article-title: Intestinal microbiota profiles in infants with acute gastroenteritis caused by rotavirus and norovirus infection: a prospective cohort study
  publication-title: Int. J. Infect. Dis.
– volume: 11
  year: 2022
  ident: bib35
  article-title: Interaction with mammalian enteric viruses alters outer membrane vesicle production and content by commensal bacteria
  publication-title: J. Extracell. Vesicles
– volume: 162
  start-page: 3511
  year: 2017
  end-page: 3515
  ident: bib56
  article-title: Study of the association between histo-blood group antigens and norovirus infection in Chinese children
  publication-title: Arch. Virol.
– volume: 9
  start-page: 548
  year: 2003
  end-page: 553
  ident: bib29
  article-title: Human susceptibility and resistance to Norwalk virus infection
  publication-title: Nat. Med.
– volume: 6
  year: 2016
  ident: bib24
  article-title: Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs
  publication-title: Sci. Rep.
– volume: 7
  start-page: 1699
  year: 2016
  ident: bib23
  article-title: High protective efficacy of probiotics and rice bran against human norovirus infection and diarrhea in gnotobiotic pigs
  publication-title: Front. Microbiol.
– volume: 11
  year: 2016
  ident: bib8
  article-title: Comparing apples and oranges?: Next generation sequencing and its impact on microbiome analysis
  publication-title: PLoS One
– volume: 100
  start-page: 1530
  year: 2019
  end-page: 1540
  ident: bib25
  article-title: Enhanced GII.4 human norovirus infection in gnotobiotic pigs transplanted with a human gut microbiota
  publication-title: J. Gen. Virol.
– volume: 10
  start-page: 130
  year: 2020
  ident: bib3
  article-title: Extrinsic factors influencing gut microbes, the immediate consequences and restoring eubiosis
  publication-title: Amb. Express
– volume: 1133
  start-page: 521
  year: 2015
  end-page: 526
  ident: bib4
  article-title: Natural microbiota of raspberries (Rubus idaeus) and strawberries (Fragaria x ananassa): microbial survey, bacterial isolation and identification, and biofilm characterization
  publication-title: 11th International Rubus and Ribes Symposium
– volume: 79
  start-page: 378
  year: 2011
  end-page: 379
  ident: bib38
  article-title: Virucidal activity of different alcohols against murine norovirus, a surrogate of human norovirus
  publication-title: J. Hosp. Infect.
– volume: 162
  start-page: 37
  year: 2013
  end-page: 42
  ident: bib26
  article-title: Pressure inactivation of Tulane virus, a candidate surrogate for human norovirus and its potential application in food industry
  publication-title: Int. J. Food Microbiol.
– volume: 87
  year: 2021
  ident: bib55
  article-title: Oyster heat shock protein 70 plays a role in binding of human noroviruses
  publication-title: Appl. Environ. Microbiol.
– volume: 82
  start-page: 2966
  year: 2016
  end-page: 2974
  ident: bib14
  article-title: Recognition of histo-blood group antigen-like carbohydrates in lettuce by human GII.4 norovirus
  publication-title: Appl. Environ. Microbiol.
– volume: 4
  start-page: 331
  year: 2016
  end-page: 334
  ident: bib13
  article-title: An examination of co-infection in acute gastroenteritis and histo-blood group antigens leading to viral infection susceptibility
  publication-title: Biomedical Reports
– volume: 14
  start-page: 1395
  year: 2022
  ident: bib6
  article-title: Gut microbiome changes occurring with norovirus infection and recovery in infants enrolled in a longitudinal birth cohort in Leon
  publication-title: Nicaragua. Viruses.
– volume: 14
  start-page: 1596
  year: 2022
  ident: bib31
  article-title: Glucose reduces norovirus binding to Enterobacter cloacae and alters gene expression of bacterial surface structures in a growth phase dependent manner
  publication-title: Viruses
– volume: 147
  start-page: 1468S
  year: 2017
  end-page: 1475S
  ident: bib51
  article-title: Factors influencing the gut microbiota, inflammation, and type 2 diabetes
  publication-title: J. Nutr.
– volume: 113
  start-page: 6248
  year: 2016
  end-page: 6255
  ident: bib16
  article-title: Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 5
  start-page: 84
  year: 2020
  end-page: 92
  ident: bib15
  article-title: The intestinal regionalization of acute norovirus infection is regulated by the microbiota via bile acid-mediated priming of type III interferon
  publication-title: Nat Microbiol
– volume: 9
  year: 2022
  ident: bib27
  article-title: Determination of antiviral mechanism of centenarian gut-derived Limosilactobacillus fermentum against norovirus
  publication-title: Front. Nutr.
– volume: 12
  year: 2017
  ident: bib2
  article-title: Human norovirus binding to select bacteria representative of the human gut microbiota
  publication-title: PLoS One
– volume: 15
  year: 2019
  ident: bib47
  article-title: A robust human norovirus replication model in zebrafish larvae
  publication-title: PLoS Pathog.
– volume: 76
  start-page: 12335
  year: 2002
  end-page: 12343
  ident: bib17
  article-title: Binding of Norwalk virus-like particles to ABH histo-blood group antigens is blocked by antisera from infected human volunteers or experimentally vaccinated mice
  publication-title: J. Virol.
– volume: 23
  year: 2022
  ident: bib41
  article-title: Replication of human norovirus in mice after antibiotic-mediated intestinal bacteria depletion
  publication-title: Int. J. Mol. Sci.
– volume: 90
  start-page: 5855
  year: 2016
  end-page: 5859
  ident: bib42
  article-title: Human norovirus interactions with histo-blood group antigens and human milk oligosaccharides
  publication-title: J. Virol.
– volume: 7
  year: 2012
  ident: bib36
  article-title: Disruption of the human gut microbiota following norovirus infection
  publication-title: PLoS One
– volume: 48
  year: 2022
  ident: bib44
  article-title: Recent developments in norovirus interactions with bacteria
  publication-title: Curr. Opin. Food Sci.
– volume: 69
  start-page: 1510
  year: 2020
  end-page: 1519
  ident: bib49
  article-title: Interaction between drugs and the gut microbiome
  publication-title: Gut
– volume: 6
  year: 2021
  ident: bib12
  article-title: New insights and enhanced human norovirus cultivation in human intestinal enteroids
  publication-title: mSphere
– volume: 406
  year: 2023
  ident: bib54
  article-title: Pseudomonas composti isolate from oyster digestive tissue specifically binds with norovirus GII.6 via Psl extracellular polysaccharide
  publication-title: Int. J. Food Microbiol.
– volume: 15
  start-page: 631
  year: 2023
  ident: bib32
  article-title: Identification of potential proteinaceous ligands of GI.1 norovirus in Pacific oyster tissues
  publication-title: Viruses-Basel.
– volume: 353
  start-page: 1387
  year: 2016
  end-page: 1393
  ident: bib11
  article-title: Replication of human noroviruses in stem cell-derived human enteroids
  publication-title: Science
– volume: 108
  start-page: 5354
  year: 2011
  end-page: 5359
  ident: bib19
  article-title: Microbiota regulates immune defense against respiratory tract influenza A virus infection
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 14
  start-page: 170
  year: 2022
  end-page: 177
  ident: bib33
  article-title: Occurrence of norovirus, rotavirus, hepatitis a virus, and enterovirus in berries in Argentina
  publication-title: Food Environ. Virol.
– volume: 80
  start-page: 10372
  year: 2006
  end-page: 10381
  ident: bib7
  article-title: Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs
  publication-title: J. Virol.
– volume: 22
  start-page: 9474
  year: 2021
  ident: bib50
  article-title: Chemotherapy-induced intestinal microbiota dysbiosis impairs mucosal homeostasis by modulating toll-like receptor signaling pathways
  publication-title: Int. J. Mol. Sci.
– volume: 10
  start-page: 39
  year: 2021
  ident: bib39
  article-title: PRISMA-S: an extension to the PRISMA statement for reporting literature searches in systematic reviews
  publication-title: Syst. Rev.
– volume: 12
  start-page: 607
  year: 2019
  ident: bib1
  article-title: Characterization of human norovirus binding to gut-Associated bacterial ligands
  publication-title: BMC Res. Notes
– volume: 7
  year: 2017
  ident: bib40
  article-title: Relevance of secretor status genotype and microbiota composition in susceptibility to rotavirus and norovirus infections in humans
  publication-title: Sci. Rep.
– volume: 109
  start-page: 106881
  year: 2020
  ident: bib9
  article-title: Inhibitory effect of lactic acid bacteria isolated from kimchi against murine norovirus
  publication-title: Food Control
– volume: 87
  start-page: 9441
  year: 2013
  end-page: 9451
  ident: bib34
  article-title: Histo-blood group antigen-like substances of human enteric bacteria as specific adsorbents for human noroviruses
  publication-title: J. Virol.
– volume: 11
  year: 2020
  ident: bib37
  article-title: The role of the gut microbiome in resisting norovirus infection as revealed by a human challenge study
  publication-title: mBio
– volume: 41
  start-page: 51
  year: 1999
  end-page: 57
  ident: bib10
  article-title: Inactivation of feline calicivirus, a Norwalk virus surrogate
  publication-title: J. Hosp. Infect.
– volume: 12
  year: 2021
  ident: bib53
  article-title: Effect of direct viral-bacterial interactions on the removal of norovirus from lettuce
  publication-title: Front. Microbiol.
– volume: 346
  start-page: 755
  year: 2014
  end-page: 759
  ident: bib20
  article-title: Enteric bacteria promote human and mouse norovirus infection of B cells
  publication-title: Science
– volume: 12
  start-page: 28
  year: 2020
  end-page: 34
  ident: bib43
  article-title: Secretor status is associated with susceptibility to disease in a large GII.6 norovirus foodborne outbreak
  publication-title: Food Environ. Virol.
– volume: 382
  start-page: 115
  year: 2008
  end-page: 123
  ident: bib45
  article-title: Noroviral P particle: structure, function and applications in virus–host interaction
  publication-title: Virology
– volume: 13
  year: 2022
  ident: bib5
  article-title: Bacterial extracellular vesicles control murine norovirus infection through modulation of antiviral immune responses
  publication-title: Front. Immunol.
– volume: 185
  start-page: 1335
  year: 2002
  end-page: 1337
  ident: bib18
  article-title: Norwalk virus infection and disease is associated with ABO histo-blood group type
  publication-title: J. Infect. Dis.
– volume: 210
  start-page: 171
  year: 2014
  end-page: 182
  ident: bib46
  article-title: Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity
  publication-title: JID (J. Infect. Dis.)
– volume: 78
  year: 2020
  ident: bib48
  article-title: Factors affecting early-life intestinal microbiota development
  publication-title: Nutrition
– volume: 185
  start-page: 1335
  year: 2002
  ident: 10.1016/j.fm.2023.104456_bib18
  article-title: Norwalk virus infection and disease is associated with ABO histo-blood group type
  publication-title: J. Infect. Dis.
  doi: 10.1086/339883
– volume: 162
  start-page: 3511
  year: 2017
  ident: 10.1016/j.fm.2023.104456_bib56
  article-title: Study of the association between histo-blood group antigens and norovirus infection in Chinese children
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-017-3494-y
– volume: 7
  start-page: 1699
  year: 2016
  ident: 10.1016/j.fm.2023.104456_bib23
  article-title: High protective efficacy of probiotics and rice bran against human norovirus infection and diarrhea in gnotobiotic pigs
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01699
– volume: 109
  start-page: 106881
  year: 2020
  ident: 10.1016/j.fm.2023.104456_bib9
  article-title: Inhibitory effect of lactic acid bacteria isolated from kimchi against murine norovirus
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2019.106881
– volume: 162
  start-page: 37
  year: 2013
  ident: 10.1016/j.fm.2023.104456_bib26
  article-title: Pressure inactivation of Tulane virus, a candidate surrogate for human norovirus and its potential application in food industry
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2012.12.016
– volume: 15
  issue: 9
  year: 2019
  ident: 10.1016/j.fm.2023.104456_bib47
  article-title: A robust human norovirus replication model in zebrafish larvae
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1008009
– volume: 82
  start-page: 2966
  year: 2016
  ident: 10.1016/j.fm.2023.104456_bib14
  article-title: Recognition of histo-blood group antigen-like carbohydrates in lettuce by human GII.4 norovirus
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.04096-15
– volume: 15
  start-page: 631
  year: 2023
  ident: 10.1016/j.fm.2023.104456_bib32
  article-title: Identification of potential proteinaceous ligands of GI.1 norovirus in Pacific oyster tissues
  publication-title: Viruses-Basel.
  doi: 10.3390/v15030631
– volume: 7
  year: 2012
  ident: 10.1016/j.fm.2023.104456_bib36
  article-title: Disruption of the human gut microbiota following norovirus infection
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0048224
– volume: 113
  start-page: 6248
  year: 2016
  ident: 10.1016/j.fm.2023.104456_bib16
  article-title: Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1605575113
– volume: 48
  year: 2022
  ident: 10.1016/j.fm.2023.104456_bib44
  article-title: Recent developments in norovirus interactions with bacteria
  publication-title: Curr. Opin. Food Sci.
– volume: 317
  year: 2020
  ident: 10.1016/j.fm.2023.104456_bib30
  article-title: Culturable bacteria resident on lettuce might contribute to accumulation of human noroviruses
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2019.108492
– volume: 14
  start-page: 170
  year: 2022
  ident: 10.1016/j.fm.2023.104456_bib33
  article-title: Occurrence of norovirus, rotavirus, hepatitis a virus, and enterovirus in berries in Argentina
  publication-title: Food Environ. Virol.
  doi: 10.1007/s12560-022-09518-z
– volume: 87
  start-page: 9441
  year: 2013
  ident: 10.1016/j.fm.2023.104456_bib34
  article-title: Histo-blood group antigen-like substances of human enteric bacteria as specific adsorbents for human noroviruses
  publication-title: J. Virol.
  doi: 10.1128/JVI.01060-13
– volume: 87
  issue: 18
  year: 2021
  ident: 10.1016/j.fm.2023.104456_bib55
  article-title: Oyster heat shock protein 70 plays a role in binding of human noroviruses
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00790-21
– volume: 11
  year: 2020
  ident: 10.1016/j.fm.2023.104456_bib37
  article-title: The role of the gut microbiome in resisting norovirus infection as revealed by a human challenge study
  publication-title: mBio
  doi: 10.1128/mBio.02634-20
– volume: 12
  year: 2021
  ident: 10.1016/j.fm.2023.104456_bib53
  article-title: Effect of direct viral-bacterial interactions on the removal of norovirus from lettuce
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.731379
– volume: 79
  start-page: 378
  year: 2011
  ident: 10.1016/j.fm.2023.104456_bib38
  article-title: Virucidal activity of different alcohols against murine norovirus, a surrogate of human norovirus
  publication-title: J. Hosp. Infect.
  doi: 10.1016/j.jhin.2011.04.029
– volume: 1133
  start-page: 521
  year: 2015
  ident: 10.1016/j.fm.2023.104456_bib4
  article-title: Natural microbiota of raspberries (Rubus idaeus) and strawberries (Fragaria x ananassa): microbial survey, bacterial isolation and identification, and biofilm characterization
  publication-title: 11th International Rubus and Ribes Symposium
– volume: 382
  start-page: 115
  year: 2008
  ident: 10.1016/j.fm.2023.104456_bib45
  article-title: Noroviral P particle: structure, function and applications in virus–host interaction
  publication-title: Virology
  doi: 10.1016/j.virol.2008.08.047
– volume: 14
  start-page: 1596
  year: 2022
  ident: 10.1016/j.fm.2023.104456_bib31
  article-title: Glucose reduces norovirus binding to Enterobacter cloacae and alters gene expression of bacterial surface structures in a growth phase dependent manner
  publication-title: Viruses
  doi: 10.3390/v14081596
– volume: 14
  start-page: 1395
  issue: 7
  year: 2022
  ident: 10.1016/j.fm.2023.104456_bib6
  article-title: Gut microbiome changes occurring with norovirus infection and recovery in infants enrolled in a longitudinal birth cohort in Leon
  publication-title: Nicaragua. Viruses.
  doi: 10.3390/v14071395
– volume: 41
  start-page: 51
  year: 1999
  ident: 10.1016/j.fm.2023.104456_bib10
  article-title: Inactivation of feline calicivirus, a Norwalk virus surrogate
  publication-title: J. Hosp. Infect.
  doi: 10.1016/S0195-6701(99)90037-3
– volume: 210
  start-page: 171
  year: 2014
  ident: 10.1016/j.fm.2023.104456_bib46
  article-title: Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity
  publication-title: JID (J. Infect. Dis.)
  doi: 10.1093/infdis/jiu037
– volume: 353
  start-page: 1387
  year: 2016
  ident: 10.1016/j.fm.2023.104456_bib11
  article-title: Replication of human noroviruses in stem cell-derived human enteroids
  publication-title: Science
  doi: 10.1126/science.aaf5211
– volume: 9
  year: 2022
  ident: 10.1016/j.fm.2023.104456_bib27
  article-title: Determination of antiviral mechanism of centenarian gut-derived Limosilactobacillus fermentum against norovirus
  publication-title: Front. Nutr.
– volume: 6
  year: 2016
  ident: 10.1016/j.fm.2023.104456_bib24
  article-title: Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs
  publication-title: Sci. Rep.
  doi: 10.1038/srep25017
– volume: 12
  start-page: 607
  year: 2019
  ident: 10.1016/j.fm.2023.104456_bib1
  article-title: Characterization of human norovirus binding to gut-Associated bacterial ligands
  publication-title: BMC Res. Notes
  doi: 10.1186/s13104-019-4669-2
– volume: 406
  year: 2023
  ident: 10.1016/j.fm.2023.104456_bib54
  article-title: Pseudomonas composti isolate from oyster digestive tissue specifically binds with norovirus GII.6 via Psl extracellular polysaccharide
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2023.110369
– volume: 147
  start-page: 1468S
  year: 2017
  ident: 10.1016/j.fm.2023.104456_bib51
  article-title: Factors influencing the gut microbiota, inflammation, and type 2 diabetes
  publication-title: J. Nutr.
  doi: 10.3945/jn.116.240754
– volume: 80
  start-page: 10372
  year: 2006
  ident: 10.1016/j.fm.2023.104456_bib7
  article-title: Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs
  publication-title: J. Virol.
  doi: 10.1128/JVI.00809-06
– volume: 7
  year: 2017
  ident: 10.1016/j.fm.2023.104456_bib40
  article-title: Relevance of secretor status genotype and microbiota composition in susceptibility to rotavirus and norovirus infections in humans
  publication-title: Sci. Rep.
  doi: 10.1038/srep45559
– volume: 111
  start-page: 76
  year: 2021
  ident: 10.1016/j.fm.2023.104456_bib52
  article-title: Intestinal microbiota profiles in infants with acute gastroenteritis caused by rotavirus and norovirus infection: a prospective cohort study
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2021.08.024
– volume: 9
  start-page: 548
  year: 2003
  ident: 10.1016/j.fm.2023.104456_bib29
  article-title: Human susceptibility and resistance to Norwalk virus infection
  publication-title: Nat. Med.
  doi: 10.1038/nm860
– volume: 11
  issue: 2
  year: 2016
  ident: 10.1016/j.fm.2023.104456_bib8
  article-title: Comparing apples and oranges?: Next generation sequencing and its impact on microbiome analysis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0148028
– volume: 13
  year: 2022
  ident: 10.1016/j.fm.2023.104456_bib5
  article-title: Bacterial extracellular vesicles control murine norovirus infection through modulation of antiviral immune responses
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.909949
– volume: 346
  start-page: 755
  year: 2014
  ident: 10.1016/j.fm.2023.104456_bib20
  article-title: Enteric bacteria promote human and mouse norovirus infection of B cells
  publication-title: Science
  doi: 10.1126/science.1257147
– volume: 10
  start-page: 39
  year: 2021
  ident: 10.1016/j.fm.2023.104456_bib39
  article-title: PRISMA-S: an extension to the PRISMA statement for reporting literature searches in systematic reviews
  publication-title: Syst. Rev.
  doi: 10.1186/s13643-020-01542-z
– volume: 78
  year: 2020
  ident: 10.1016/j.fm.2023.104456_bib48
  article-title: Factors affecting early-life intestinal microbiota development
  publication-title: Nutrition
  doi: 10.1016/j.nut.2020.110812
– volume: 22
  start-page: 9474
  year: 2021
  ident: 10.1016/j.fm.2023.104456_bib50
  article-title: Chemotherapy-induced intestinal microbiota dysbiosis impairs mucosal homeostasis by modulating toll-like receptor signaling pathways
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22179474
– volume: 12
  start-page: 28
  year: 2020
  ident: 10.1016/j.fm.2023.104456_bib43
  article-title: Secretor status is associated with susceptibility to disease in a large GII.6 norovirus foodborne outbreak
  publication-title: Food Environ. Virol.
  doi: 10.1007/s12560-019-09410-3
– volume: 11
  issue: 1
  year: 2022
  ident: 10.1016/j.fm.2023.104456_bib35
  article-title: Interaction with mammalian enteric viruses alters outer membrane vesicle production and content by commensal bacteria
  publication-title: J. Extracell. Vesicles
  doi: 10.1002/jev2.12172
– volume: 76
  start-page: 12335
  year: 2002
  ident: 10.1016/j.fm.2023.104456_bib17
  article-title: Binding of Norwalk virus-like particles to ABH histo-blood group antigens is blocked by antisera from infected human volunteers or experimentally vaccinated mice
  publication-title: J. Virol.
  doi: 10.1128/JVI.76.23.12335-12343.2002
– volume: 5
  start-page: 84
  year: 2020
  ident: 10.1016/j.fm.2023.104456_bib15
  article-title: The intestinal regionalization of acute norovirus infection is regulated by the microbiota via bile acid-mediated priming of type III interferon
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-019-0602-7
– volume: 100
  start-page: 1530
  year: 2019
  ident: 10.1016/j.fm.2023.104456_bib25
  article-title: Enhanced GII.4 human norovirus infection in gnotobiotic pigs transplanted with a human gut microbiota
  publication-title: J. Gen. Virol.
  doi: 10.1099/jgv.0.001336
– volume: 12
  issue: 3
  year: 2017
  ident: 10.1016/j.fm.2023.104456_bib2
  article-title: Human norovirus binding to select bacteria representative of the human gut microbiota
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0173124
– volume: 69
  start-page: 1510
  year: 2020
  ident: 10.1016/j.fm.2023.104456_bib49
  article-title: Interaction between drugs and the gut microbiome
  publication-title: Gut
  doi: 10.1136/gutjnl-2019-320204
– volume: 4
  start-page: 331
  year: 2016
  ident: 10.1016/j.fm.2023.104456_bib13
  article-title: An examination of co-infection in acute gastroenteritis and histo-blood group antigens leading to viral infection susceptibility
  publication-title: Biomedical Reports
  doi: 10.3892/br.2016.585
– volume: 196
  start-page: 1780
  year: 2016
  ident: 10.1016/j.fm.2023.104456_bib21
  article-title: Differential effects of Escherichia coli Nissle and Lactobacillus rhamnosus Strain GG on human rotavirus binding, infection, and B cell immunity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1501705
– volume: 6
  issue: 1
  year: 2021
  ident: 10.1016/j.fm.2023.104456_bib12
  article-title: New insights and enhanced human norovirus cultivation in human intestinal enteroids
  publication-title: mSphere
  doi: 10.1128/mSphere.01136-20
– volume: 6
  year: 2016
  ident: 10.1016/j.fm.2023.104456_bib22
  article-title: Antiviral effect of Vitamin A on norovirus infection via modulation of the gut microbiome
  publication-title: Sci. Rep.
– volume: 108
  start-page: 5354
  year: 2011
  ident: 10.1016/j.fm.2023.104456_bib19
  article-title: Microbiota regulates immune defense against respiratory tract influenza A virus infection
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1019378108
– volume: 23
  year: 2022
  ident: 10.1016/j.fm.2023.104456_bib41
  article-title: Replication of human norovirus in mice after antibiotic-mediated intestinal bacteria depletion
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms231810643
– volume: 90
  start-page: 5855
  year: 2016
  ident: 10.1016/j.fm.2023.104456_bib42
  article-title: Human norovirus interactions with histo-blood group antigens and human milk oligosaccharides
  publication-title: J. Virol.
  doi: 10.1128/JVI.00317-16
– volume: 10
  start-page: 130
  year: 2020
  ident: 10.1016/j.fm.2023.104456_bib3
  article-title: Extrinsic factors influencing gut microbes, the immediate consequences and restoring eubiosis
  publication-title: Amb. Express
  doi: 10.1186/s13568-020-01066-8
– volume: 17
  year: 2022
  ident: 10.1016/j.fm.2023.104456_bib28
  article-title: Clinical significance and intestinal microbiota composition in immunocompromised children with norovirus gastroenteritis
  publication-title: PLoS One
SSID ssj0011539
Score 2.428057
SecondaryResourceType review_article
Snippet Human norovirus (HuNoV) is an important foodborne virus, which causes non-bacterial acute gastroenteritis and is associated with a high disease burden....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104456
SubjectTerms burden of disease
Caliciviridae Infections
food microbiology
Gastroenteritis
Gastrointestinal Microbiome
gene expression
Human norovirus
Humans
Intestinal microbes
intestinal microorganisms
Intestines
Murine norovirus
Norovirus
Norovirus - genetics
pathogenicity
Virus-bacteria interaction
Virus-like particles
viruses
Title Interactions between human norovirus and intestinal microbiota/microbes: A scoping review
URI https://dx.doi.org/10.1016/j.fm.2023.104456
https://www.ncbi.nlm.nih.gov/pubmed/38225056
https://www.proquest.com/docview/2915570768
https://www.proquest.com/docview/3153174823
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7Boqpcqpa2sH0gV-qlhzSJHT_S2woVbVuVS4tET5HjTKRFkEVk98CF3844dlZCAg69JZEdWTMez4xn5huAz6Tic48SntjcluSg6DaxyPOEc2OURC3cgFPw-0TNT4ufZ_JsC47GWhifVhnP_nCmD6d1_JJGaqZXi0X6h5TfEEgjI9rD6slt2OGiVHICO7Mfv-Ynm2ACCXUZ0Dh9ETXPYrQypHm1vhydCx_rLHwX64e102PW56CFjl_Ci2g-sllY4SvYwm4PnoWGkjd78HysM-5fw7_hsi_ULfQs5mOxoScf65b-JuF63TPbNcxDRpCk-x9fLgIw08qm4RH7b2zGfO0K6TgWCl3ewOnx979H8yQ2UkgcOaCrBE2GSqOU2qoSjVB1q_Pc6cYK5G2TSWuFtFyJ1ilnJTnbBTpZG0TiZGa1eAuTbtnhATAlnMG85ZkzbWEaY7Eua2GM0w5dY5oppCMBKxdRxn2zi4tqTCc7J_GpPMmrQPIpfNnMuAoIG0-MFSNPqnu7pCIF8MSsTyP7KhIeHxGxHS7XfcU9Or72wcjHxwjaPuS2GS6msB94v1mnIPPKm5Dv_mtd72GX3oqQPvkBJqvrNX4kE2dVH8L219v8MG7kOyky-So
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT90wDLcYaGIXNGCwN_aRSVx2KH1NmiaPG0JDbxtwGUjsFKWpKz209SH63mGX_e2zm_ZJSIPDblXrVJGd2E5s_wxwSCY-Y5TwxGd-QgcUUyceZZZIaW2h0ajQ4RRcXBbT6_zrjb5Zg9OhFobTKnvdH3V6p637N2nPzfRuNku_k_HrAmnkRDOsnn4GG7lWhvP6jv6s8jzI4-naiTF1wuR9rDImedVcjC4VRzpz7mH9b9v0mO_Z2aCzl7DVO4_iJM5vG9aw2YHnsZ3k7x3YHKqM21340V31xaqFVvTZWKLryCeaOd8j3C9b4ZtKMGAE7XP-8a9ZhGVa-DQ-YnssTgRXrpCFE7HM5RVcn32-Op0mfRuFJNDxc5GgHWNhUGvjiwlaVZS1ybJgKq9Q1tVYe6-0l4WqQxG8pqN2jkGXFpHkOPZG7cF6M2_wNYhCBYtZLcfB1rmtrMdyUiprgwkYKluNIB0Y6EKPMc6tLn66IZnsljaPY5a7yPIRfFqNuIv4Gk_QqkEm7sEacaT-nxj1cRCfo63D8RDf4HzZOsnY-IZDkY_TKFo-dGizUo1gP8p-NU9FzhU7kG_-a14fYHN6dXHuzr9cfjuAF_Qlj4mUb2F9cb_Ed-TsLMr33WL-C0Ro-fU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interactions+between+human+norovirus+and+intestinal+microbiota%2Fmicrobes%3A+A+scoping+review&rft.jtitle=Food+microbiology&rft.au=Yang%2C+Yaqi&rft.au=An%2C+Ran&rft.au=Lyu%2C+Chenang&rft.au=Wang%2C+Dapeng&rft.date=2024-05-01&rft.issn=1095-9998&rft.eissn=1095-9998&rft.volume=119&rft.spage=104456&rft_id=info:doi/10.1016%2Fj.fm.2023.104456&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-0020&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-0020&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-0020&client=summon