Interactions between human norovirus and intestinal microbiota/microbes: A scoping review
Human norovirus (HuNoV) is an important foodborne virus, which causes non-bacterial acute gastroenteritis and is associated with a high disease burden. Recently, researchers have focus on the interaction between HuNoV and intestinal microbiota/microbes and engaged in studies investigating the implic...
Saved in:
Published in | Food microbiology Vol. 119; p. 104456 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0740-0020 1095-9998 1095-9998 |
DOI | 10.1016/j.fm.2023.104456 |
Cover
Abstract | Human norovirus (HuNoV) is an important foodborne virus, which causes non-bacterial acute gastroenteritis and is associated with a high disease burden. Recently, researchers have focus on the interaction between HuNoV and intestinal microbiota/microbes and engaged in studies investigating the implications of this interaction on HuNoV infection. However, the interaction mechanism and the implication of this interaction on host remain obscure. Current scoping review aimed to systematically investigate the interaction between HuNoV and intestinal microbiota, as well as their implication on HuNoV or HuNoV related symptoms. We found that HuNoV could bind to intestinal microbes and affect the intestinal microbial composition, diversity, and microbial gene expression. In reverse, intestinal microbes could affect HuNoV infectivity, although demonstrating contradictory effects (i.e., promote or inhibit HuNoV replication). These contradictory effects existed among microbes, in part, could be attributed to the differences among microbes (histo-blood group antigens and/or other small molecule substances). Results of current scoping review could assist in the selection and isolation of potential microbial candidates to prevent and/or alleviate HuNoV related symptoms.
•Human norovirus (HuNoV) infection leads to alterations in intestinal microbiota.•HuNoV infected subjects with different microbiota compositions exhibit dissimilar clinical symptoms.•Intestinal microbes exhibited contradictory effects on HuNoV infection.•Intestinal microbes could bind to HuNoV via bacterial originated substances. |
---|---|
AbstractList | Human norovirus (HuNoV) is an important foodborne virus, which causes non-bacterial acute gastroenteritis and is associated with a high disease burden. Recently, researchers have focus on the interaction between HuNoV and intestinal microbiota/microbes and engaged in studies investigating the implications of this interaction on HuNoV infection. However, the interaction mechanism and the implication of this interaction on host remain obscure. Current scoping review aimed to systematically investigate the interaction between HuNoV and intestinal microbiota, as well as their implication on HuNoV or HuNoV related symptoms. We found that HuNoV could bind to intestinal microbes and affect the intestinal microbial composition, diversity, and microbial gene expression. In reverse, intestinal microbes could affect HuNoV infectivity, although demonstrating contradictory effects (i.e., promote or inhibit HuNoV replication). These contradictory effects existed among microbes, in part, could be attributed to the differences among microbes (histo-blood group antigens and/or other small molecule substances). Results of current scoping review could assist in the selection and isolation of potential microbial candidates to prevent and/or alleviate HuNoV related symptoms.Human norovirus (HuNoV) is an important foodborne virus, which causes non-bacterial acute gastroenteritis and is associated with a high disease burden. Recently, researchers have focus on the interaction between HuNoV and intestinal microbiota/microbes and engaged in studies investigating the implications of this interaction on HuNoV infection. However, the interaction mechanism and the implication of this interaction on host remain obscure. Current scoping review aimed to systematically investigate the interaction between HuNoV and intestinal microbiota, as well as their implication on HuNoV or HuNoV related symptoms. We found that HuNoV could bind to intestinal microbes and affect the intestinal microbial composition, diversity, and microbial gene expression. In reverse, intestinal microbes could affect HuNoV infectivity, although demonstrating contradictory effects (i.e., promote or inhibit HuNoV replication). These contradictory effects existed among microbes, in part, could be attributed to the differences among microbes (histo-blood group antigens and/or other small molecule substances). Results of current scoping review could assist in the selection and isolation of potential microbial candidates to prevent and/or alleviate HuNoV related symptoms. Human norovirus (HuNoV) is an important foodborne virus, which causes non-bacterial acute gastroenteritis and is associated with a high disease burden. Recently, researchers have focus on the interaction between HuNoV and intestinal microbiota/microbes and engaged in studies investigating the implications of this interaction on HuNoV infection. However, the interaction mechanism and the implication of this interaction on host remain obscure. Current scoping review aimed to systematically investigate the interaction between HuNoV and intestinal microbiota, as well as their implication on HuNoV or HuNoV related symptoms. We found that HuNoV could bind to intestinal microbes and affect the intestinal microbial composition, diversity, and microbial gene expression. In reverse, intestinal microbes could affect HuNoV infectivity, although demonstrating contradictory effects (i.e., promote or inhibit HuNoV replication). These contradictory effects existed among microbes, in part, could be attributed to the differences among microbes (histo-blood group antigens and/or other small molecule substances). Results of current scoping review could assist in the selection and isolation of potential microbial candidates to prevent and/or alleviate HuNoV related symptoms. Human norovirus (HuNoV) is an important foodborne virus, which causes non-bacterial acute gastroenteritis and is associated with a high disease burden. Recently, researchers have focus on the interaction between HuNoV and intestinal microbiota/microbes and engaged in studies investigating the implications of this interaction on HuNoV infection. However, the interaction mechanism and the implication of this interaction on host remain obscure. Current scoping review aimed to systematically investigate the interaction between HuNoV and intestinal microbiota, as well as their implication on HuNoV or HuNoV related symptoms. We found that HuNoV could bind to intestinal microbes and affect the intestinal microbial composition, diversity, and microbial gene expression. In reverse, intestinal microbes could affect HuNoV infectivity, although demonstrating contradictory effects (i.e., promote or inhibit HuNoV replication). These contradictory effects existed among microbes, in part, could be attributed to the differences among microbes (histo-blood group antigens and/or other small molecule substances). Results of current scoping review could assist in the selection and isolation of potential microbial candidates to prevent and/or alleviate HuNoV related symptoms. •Human norovirus (HuNoV) infection leads to alterations in intestinal microbiota.•HuNoV infected subjects with different microbiota compositions exhibit dissimilar clinical symptoms.•Intestinal microbes exhibited contradictory effects on HuNoV infection.•Intestinal microbes could bind to HuNoV via bacterial originated substances. |
ArticleNumber | 104456 |
Author | An, Ran Lyu, Chenang Wang, Dapeng Yang, Yaqi |
Author_xml | – sequence: 1 givenname: Yaqi surname: Yang fullname: Yang, Yaqi – sequence: 2 givenname: Ran surname: An fullname: An, Ran – sequence: 3 givenname: Chenang surname: Lyu fullname: Lyu, Chenang – sequence: 4 givenname: Dapeng surname: Wang fullname: Wang, Dapeng email: dapengwang@sjtu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38225056$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTFv3SAURlGVqnlJuneqGLv45QIG29miqG0iRcqSDpkQxtctTza8Ak6Uf1-enHSo1HYCpHPQvd93Qo588EjIBwZbBkyd77bjvOXARXnWtVRvyIZBJ6uu69ojsoGmhgqAwzE5SWkHwJgU3TtyLFrOJUi1IQ83PmM0NrvgE-0xPyF6-mOZjac-xPDo4pKo8QN1BUzZeTPR2dkYeheyOV-vmC7oJU027J3_TiM-Onw6I29HMyV8_3Kekm9fPt9fXVe3d19vri5vKytakStsAVWDUjZGddgK1Y8NY7YZjEA-DiCNEdJwJUarrJHY8xqt7FtEJRiYRpyST-u_-xh-LmVEPbtkcZqMx7AkLcrOrKlbLv6L8o6VOaBRbUE_vqBLP-Og99HNJj7r1-QKACtQ9k8p4vgbYaAP5eidHmd9KEev5RRF_aFYl80h-RyNm_4lXqwilhxLtlEn69BbHFxEm_UQ3N_lXy1_qCw |
CitedBy_id | crossref_primary_10_1097_QCO_0000000000001053 crossref_primary_10_1038_s41598_025_88312_w crossref_primary_10_1016_j_fm_2024_104591 |
Cites_doi | 10.1086/339883 10.1007/s00705-017-3494-y 10.3389/fmicb.2016.01699 10.1016/j.foodcont.2019.106881 10.1016/j.ijfoodmicro.2012.12.016 10.1371/journal.ppat.1008009 10.1128/AEM.04096-15 10.3390/v15030631 10.1371/journal.pone.0048224 10.1073/pnas.1605575113 10.1016/j.ijfoodmicro.2019.108492 10.1007/s12560-022-09518-z 10.1128/JVI.01060-13 10.1128/AEM.00790-21 10.1128/mBio.02634-20 10.3389/fmicb.2021.731379 10.1016/j.jhin.2011.04.029 10.1016/j.virol.2008.08.047 10.3390/v14081596 10.3390/v14071395 10.1016/S0195-6701(99)90037-3 10.1093/infdis/jiu037 10.1126/science.aaf5211 10.1038/srep25017 10.1186/s13104-019-4669-2 10.1016/j.ijfoodmicro.2023.110369 10.3945/jn.116.240754 10.1128/JVI.00809-06 10.1038/srep45559 10.1016/j.ijid.2021.08.024 10.1038/nm860 10.1371/journal.pone.0148028 10.3389/fimmu.2022.909949 10.1126/science.1257147 10.1186/s13643-020-01542-z 10.1016/j.nut.2020.110812 10.3390/ijms22179474 10.1007/s12560-019-09410-3 10.1002/jev2.12172 10.1128/JVI.76.23.12335-12343.2002 10.1038/s41564-019-0602-7 10.1099/jgv.0.001336 10.1371/journal.pone.0173124 10.1136/gutjnl-2019-320204 10.3892/br.2016.585 10.4049/jimmunol.1501705 10.1128/mSphere.01136-20 10.1073/pnas.1019378108 10.3390/ijms231810643 10.1128/JVI.00317-16 10.1186/s13568-020-01066-8 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.fm.2023.104456 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Biology |
EISSN | 1095-9998 |
ExternalDocumentID | 38225056 10_1016_j_fm_2023_104456 S0740002023002435 |
Genre | Journal Article Scoping Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AAAJQ AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARKO AATLK AAXKI AAXUO AAYJJ ABFRF ABGRD ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ADBBV ADEZE ADFGL ADHUB ADMUD ADNMO ADQTV AEBSH AEFWE AEIPS AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CJTIS COF CS3 DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMG HVGLF HZ~ IHE J1W KOM LG5 LUGTX LW8 LZ5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SES SEW SIN SPCBC SSA SSI SSZ T5K UBH UNMZH WUQ XPP Y6R ZMT ZU3 ~G- ~KM AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 EFLBG 7S9 L.6 |
ID | FETCH-LOGICAL-c383t-e80e67e557a69e836bf711c7da3e2fd05aa35a263fc6ca5eb24ec5b8ee6310a73 |
IEDL.DBID | AIKHN |
ISSN | 0740-0020 1095-9998 |
IngestDate | Fri Sep 05 11:03:57 EDT 2025 Fri Sep 05 05:37:36 EDT 2025 Mon Jul 21 06:02:33 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 Tue Jul 01 01:11:44 EDT 2025 Sat Jan 18 16:04:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Murine norovirus HuNoV Human norovirus EPS HBGAs LAB Virus-like particles VLPs Intestinal microbes MNV CMVs OMVs Virus-bacteria interaction AGE |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c383t-e80e67e557a69e836bf711c7da3e2fd05aa35a263fc6ca5eb24ec5b8ee6310a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 38225056 |
PQID | 2915570768 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153174823 proquest_miscellaneous_2915570768 pubmed_primary_38225056 crossref_primary_10_1016_j_fm_2023_104456 crossref_citationtrail_10_1016_j_fm_2023_104456 elsevier_sciencedirect_doi_10_1016_j_fm_2023_104456 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 2024-May 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Food microbiology |
PublicationTitleAlternate | Food Microbiol |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Grau, Zhu, Peterson, Helm, Philip, Phillips, Hernandez, Turula, Frasse, Graziano, Wilen, Wobus, Baldridge, Karst (bib15) 2020; 5 Furuya, Nakajima, Sasaki, Urita (bib13) 2016; 4 Zhuang, Jin, Yan, Cheng (bib56) 2017; 162 Li, Gao, Xue, Shang, Cai, Xie, Jiang, Chen, Zhang, Wang, Chen, Ding, Wu (bib27) 2022; 9 Ettayebi, Tenge, Cortes-Penfield, Crawford, Neill, Zeng, Yu, Ayyar, Burrin, Ramani, Atmar, Estes (bib12) 2021; 6 Dong Joo, Day, Soontag, Daseul, Changsun (bib9) 2020; 109 Rodríguez-Díaz, García-Mantrana, Vila-Vicent, Gozalbo-Rovira, Buesa, Monedero, Collado (bib40) 2017; 7 Wen, Duffy (bib51) 2017; 147 Liu, Zhang, Liao, Zou, Tang, Tian, Young, Wu, Wang (bib30) 2020; 317 Sharma, Hagbom, Carlsson, Ohd, Insulander, Eriksson, Simonsson, Widerstrom, Nordgren (bib43) 2020; 12 Uchiyama, Chassaing, Zhang, Gewirtz (bib46) 2014; 210 Lin, Yang, Lin, Lu, Tsai, Lu, Chen, Chen (bib28) 2022; 17 Almand, Moore, Jaykus (bib1) 2019; 12 Wei, Wen, Xian (bib50) 2021; 22 Santiso-Bellon, Gozalbo-Rovira, Buesa, Rubio-del-Campo, Pena-Gil, Navarro-Lleo, Carcamo-Calvo, Yebra, Monedero, Rodriguez-Diaz (bib41) 2022; 23 Soorneedi, Moore (bib44) 2022; 48 Miura, Sano, Suenaga, Yoshimura, Fuzawa, Nakagomi, Nakagomi, Okabe (bib34) 2013; 87 Weersma, Zhernakova, Fu (bib49) 2020; 69 Vandenplas, Carnielli, Ksiazyk, Luna, Migacheva, Mosselmans, Picaud, Possner, Singhal, Wabitsch (bib48) 2020; 78 Clooney, Fouhy, Sleator, O'Driscoll, Stanton, Cotter, Claesson (bib8) 2016; 11 Martin, Emilse, Pereyra, Virginia, Sanchez, Sant’Ana, Angelica (bib33) 2022; 14 Baugher, Jaykus (bib4) 2015; 1133 Gao, Esseili, Lu, Saif, Wang (bib14) 2016; 82 Hutson, Atmar, Graham, Estes (bib18) 2002; 185 Paulmann, Steinmann, Becker, Bischoff, Steinmann, Steinmann (bib38) 2011; 79 Lei, Samuel, Twitchell, Bui, Ramesh, Wen, Weiss, Li, Yang, Jiang, Yuan (bib24) 2016; 6 Van Dycke, Ny, Conceicao-Neto, Maes, Hosmillo, Cuvry, Goodfellow, Nogueira, Verbeken, Matthijnssens, de Witte, Neyts, Rocha-Pereira (bib47) 2019; 15 Almand, Moore, Outlaw, Jaykus (bib2) 2017; 12 Nelson, Walk, Taube, Taniuchi, Houpt, Wobus, Young (bib36) 2012; 7 Ichinohe, Pang, Kumamoto, Peaper, Ho, Murray, Iwasaki (bib19) 2011; 108 Haga, Fujimoto, Takai-Todaka, Miki, Doan, Murakami, Yokoyama, Murata, Nakanishi, Katayama (bib16) 2016; 113 Zhang, Liu, Wu, Wang (bib55) 2021; 87 Cannon, Seabolt, Xu, Montmayeur, Suh, Diez-Valcarce, Bucardo, Becker-Dreps, Vinjé (bib6) 2022; 14 Mosby, Bhar, Phillips, Edelmann, Jones (bib35) 2022; 11 Rethlefsen, Kirtley, Waffenschmidt, Ayala, Moher, Page, Koffel, Group (bib39) 2021; 10 Li, Ye, Neetoo, Golovan, Chen (bib26) 2013; 162 Bajinka, Tan, Abdelhalim, Ozdemir, Qiu (bib3) 2020; 10 Lei, Ramesh, Twitchell, Wen, Bui, Weiss, Yang, Kocher, Li, Giri-Rachman, Van Trang, Jiang, Ryan, Yuan (bib23) 2016; 7 Long, Mosby, Jones (bib31) 2022; 14 Tan, Fang, Chachiyo, Xia, Huang, Fang, Jiang, Jiang (bib45) 2008; 382 Xu, Liu, Chen, Zou, Jin, Zhang, Sheng, Liao, Hu, Cheng (bib53) 2021; 12 Lindesmith, Moe, Marionneau, Ruvoen, Jiang, Lindblad, Stewart, Lependu, Baric (bib29) 2003; 9 Ettayebi, Crawford, Murakami, Broughman, Karandikar, Tenge, Neill, Blutt, Zeng, Qu, Kou, Opekun, Burrin, Graham, Ramani, Atmar, Estes (bib11) 2016; 353 Lee, Ko (bib22) 2016; 6 Yu, Han, Yang, Zhang, Chen, Yu, Wang (bib54) 2023; 406 Kandasamy, Vlasova, Fischer, Kumar, Chattha, Rauf, Shao, Langel, Rajashekara, Saif (bib21) 2016; 196 Bhar, Zhao, Bartel, Sterchele, Del Mazo, Emerson, Edelmann, Jones (bib5) 2022; 13 Patin, Peña-Gonzalez, Hatt, Moe, Kirby, Konstantinidis (bib37) 2020; 11 Schroten, Hanisch, Hansman (bib42) 2016; 90 Cheetham, Souza, Meulia, Grimes, Han, Saif (bib7) 2006; 80 Lei, Twitchell, Ramesh, Bui, Majette, Tin, Avery, Arango-Argoty, Zhang, Becker-Dreps, Azcarate-Peril, Jiang, Yuan (bib25) 2019; 100 Harrington, Lindesmith, Yount, Moe, Baric (bib17) 2002; 76 Lyu, Li, Shi, An, Wang, Luo, Wang (bib32) 2023; 15 Doultree, Druce, Birch, Bowden, Marshall (bib10) 1999; 41 Xiong, Li, Li, Yang, Shang, He, Liu, Luo, Xie (bib52) 2021; 111 Jones, Watanabe, Zhu, Graves, Keyes, Grau, Gonzalez-Hernandez, Iovine, Wobus, Vinjé, Tibbetts, Wallet, Karst (bib20) 2014; 346 Lindesmith (10.1016/j.fm.2023.104456_bib29) 2003; 9 Tan (10.1016/j.fm.2023.104456_bib45) 2008; 382 Almand (10.1016/j.fm.2023.104456_bib1) 2019; 12 Dong Joo (10.1016/j.fm.2023.104456_bib9) 2020; 109 Nelson (10.1016/j.fm.2023.104456_bib36) 2012; 7 Lee (10.1016/j.fm.2023.104456_bib22) 2016; 6 Bajinka (10.1016/j.fm.2023.104456_bib3) 2020; 10 Harrington (10.1016/j.fm.2023.104456_bib17) 2002; 76 Uchiyama (10.1016/j.fm.2023.104456_bib46) 2014; 210 Long (10.1016/j.fm.2023.104456_bib31) 2022; 14 Ichinohe (10.1016/j.fm.2023.104456_bib19) 2011; 108 Baugher (10.1016/j.fm.2023.104456_bib4) 2015; 1133 Rodríguez-Díaz (10.1016/j.fm.2023.104456_bib40) 2017; 7 Li (10.1016/j.fm.2023.104456_bib27) 2022; 9 Santiso-Bellon (10.1016/j.fm.2023.104456_bib41) 2022; 23 Lei (10.1016/j.fm.2023.104456_bib25) 2019; 100 Furuya (10.1016/j.fm.2023.104456_bib13) 2016; 4 Van Dycke (10.1016/j.fm.2023.104456_bib47) 2019; 15 Ettayebi (10.1016/j.fm.2023.104456_bib12) 2021; 6 Almand (10.1016/j.fm.2023.104456_bib2) 2017; 12 Cheetham (10.1016/j.fm.2023.104456_bib7) 2006; 80 Mosby (10.1016/j.fm.2023.104456_bib35) 2022; 11 Schroten (10.1016/j.fm.2023.104456_bib42) 2016; 90 Weersma (10.1016/j.fm.2023.104456_bib49) 2020; 69 Sharma (10.1016/j.fm.2023.104456_bib43) 2020; 12 Miura (10.1016/j.fm.2023.104456_bib34) 2013; 87 Zhuang (10.1016/j.fm.2023.104456_bib56) 2017; 162 Haga (10.1016/j.fm.2023.104456_bib16) 2016; 113 Xu (10.1016/j.fm.2023.104456_bib53) 2021; 12 Gao (10.1016/j.fm.2023.104456_bib14) 2016; 82 Ettayebi (10.1016/j.fm.2023.104456_bib11) 2016; 353 Lei (10.1016/j.fm.2023.104456_bib23) 2016; 7 Paulmann (10.1016/j.fm.2023.104456_bib38) 2011; 79 Patin (10.1016/j.fm.2023.104456_bib37) 2020; 11 Soorneedi (10.1016/j.fm.2023.104456_bib44) 2022; 48 Wei (10.1016/j.fm.2023.104456_bib50) 2021; 22 Lin (10.1016/j.fm.2023.104456_bib28) 2022; 17 Vandenplas (10.1016/j.fm.2023.104456_bib48) 2020; 78 Doultree (10.1016/j.fm.2023.104456_bib10) 1999; 41 Grau (10.1016/j.fm.2023.104456_bib15) 2020; 5 Wen (10.1016/j.fm.2023.104456_bib51) 2017; 147 Bhar (10.1016/j.fm.2023.104456_bib5) 2022; 13 Li (10.1016/j.fm.2023.104456_bib26) 2013; 162 Lyu (10.1016/j.fm.2023.104456_bib32) 2023; 15 Kandasamy (10.1016/j.fm.2023.104456_bib21) 2016; 196 Cannon (10.1016/j.fm.2023.104456_bib6) 2022; 14 Rethlefsen (10.1016/j.fm.2023.104456_bib39) 2021; 10 Lei (10.1016/j.fm.2023.104456_bib24) 2016; 6 Zhang (10.1016/j.fm.2023.104456_bib55) 2021; 87 Liu (10.1016/j.fm.2023.104456_bib30) 2020; 317 Martin (10.1016/j.fm.2023.104456_bib33) 2022; 14 Hutson (10.1016/j.fm.2023.104456_bib18) 2002; 185 Xiong (10.1016/j.fm.2023.104456_bib52) 2021; 111 Yu (10.1016/j.fm.2023.104456_bib54) 2023; 406 Jones (10.1016/j.fm.2023.104456_bib20) 2014; 346 Clooney (10.1016/j.fm.2023.104456_bib8) 2016; 11 |
References_xml | – volume: 196 start-page: 1780 year: 2016 end-page: 1789 ident: bib21 article-title: Differential effects of Escherichia coli Nissle and Lactobacillus rhamnosus Strain GG on human rotavirus binding, infection, and B cell immunity publication-title: J. Immunol. – volume: 317 year: 2020 ident: bib30 article-title: Culturable bacteria resident on lettuce might contribute to accumulation of human noroviruses publication-title: Int. J. Food Microbiol. – volume: 17 year: 2022 ident: bib28 article-title: Clinical significance and intestinal microbiota composition in immunocompromised children with norovirus gastroenteritis publication-title: PLoS One – volume: 6 year: 2016 ident: bib22 article-title: Antiviral effect of Vitamin A on norovirus infection via modulation of the gut microbiome publication-title: Sci. Rep. – volume: 111 start-page: 76 year: 2021 end-page: 84 ident: bib52 article-title: Intestinal microbiota profiles in infants with acute gastroenteritis caused by rotavirus and norovirus infection: a prospective cohort study publication-title: Int. J. Infect. Dis. – volume: 11 year: 2022 ident: bib35 article-title: Interaction with mammalian enteric viruses alters outer membrane vesicle production and content by commensal bacteria publication-title: J. Extracell. Vesicles – volume: 162 start-page: 3511 year: 2017 end-page: 3515 ident: bib56 article-title: Study of the association between histo-blood group antigens and norovirus infection in Chinese children publication-title: Arch. Virol. – volume: 9 start-page: 548 year: 2003 end-page: 553 ident: bib29 article-title: Human susceptibility and resistance to Norwalk virus infection publication-title: Nat. Med. – volume: 6 year: 2016 ident: bib24 article-title: Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs publication-title: Sci. Rep. – volume: 7 start-page: 1699 year: 2016 ident: bib23 article-title: High protective efficacy of probiotics and rice bran against human norovirus infection and diarrhea in gnotobiotic pigs publication-title: Front. Microbiol. – volume: 11 year: 2016 ident: bib8 article-title: Comparing apples and oranges?: Next generation sequencing and its impact on microbiome analysis publication-title: PLoS One – volume: 100 start-page: 1530 year: 2019 end-page: 1540 ident: bib25 article-title: Enhanced GII.4 human norovirus infection in gnotobiotic pigs transplanted with a human gut microbiota publication-title: J. Gen. Virol. – volume: 10 start-page: 130 year: 2020 ident: bib3 article-title: Extrinsic factors influencing gut microbes, the immediate consequences and restoring eubiosis publication-title: Amb. Express – volume: 1133 start-page: 521 year: 2015 end-page: 526 ident: bib4 article-title: Natural microbiota of raspberries (Rubus idaeus) and strawberries (Fragaria x ananassa): microbial survey, bacterial isolation and identification, and biofilm characterization publication-title: 11th International Rubus and Ribes Symposium – volume: 79 start-page: 378 year: 2011 end-page: 379 ident: bib38 article-title: Virucidal activity of different alcohols against murine norovirus, a surrogate of human norovirus publication-title: J. Hosp. Infect. – volume: 162 start-page: 37 year: 2013 end-page: 42 ident: bib26 article-title: Pressure inactivation of Tulane virus, a candidate surrogate for human norovirus and its potential application in food industry publication-title: Int. J. Food Microbiol. – volume: 87 year: 2021 ident: bib55 article-title: Oyster heat shock protein 70 plays a role in binding of human noroviruses publication-title: Appl. Environ. Microbiol. – volume: 82 start-page: 2966 year: 2016 end-page: 2974 ident: bib14 article-title: Recognition of histo-blood group antigen-like carbohydrates in lettuce by human GII.4 norovirus publication-title: Appl. Environ. Microbiol. – volume: 4 start-page: 331 year: 2016 end-page: 334 ident: bib13 article-title: An examination of co-infection in acute gastroenteritis and histo-blood group antigens leading to viral infection susceptibility publication-title: Biomedical Reports – volume: 14 start-page: 1395 year: 2022 ident: bib6 article-title: Gut microbiome changes occurring with norovirus infection and recovery in infants enrolled in a longitudinal birth cohort in Leon publication-title: Nicaragua. Viruses. – volume: 14 start-page: 1596 year: 2022 ident: bib31 article-title: Glucose reduces norovirus binding to Enterobacter cloacae and alters gene expression of bacterial surface structures in a growth phase dependent manner publication-title: Viruses – volume: 147 start-page: 1468S year: 2017 end-page: 1475S ident: bib51 article-title: Factors influencing the gut microbiota, inflammation, and type 2 diabetes publication-title: J. Nutr. – volume: 113 start-page: 6248 year: 2016 end-page: 6255 ident: bib16 article-title: Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 5 start-page: 84 year: 2020 end-page: 92 ident: bib15 article-title: The intestinal regionalization of acute norovirus infection is regulated by the microbiota via bile acid-mediated priming of type III interferon publication-title: Nat Microbiol – volume: 9 year: 2022 ident: bib27 article-title: Determination of antiviral mechanism of centenarian gut-derived Limosilactobacillus fermentum against norovirus publication-title: Front. Nutr. – volume: 12 year: 2017 ident: bib2 article-title: Human norovirus binding to select bacteria representative of the human gut microbiota publication-title: PLoS One – volume: 15 year: 2019 ident: bib47 article-title: A robust human norovirus replication model in zebrafish larvae publication-title: PLoS Pathog. – volume: 76 start-page: 12335 year: 2002 end-page: 12343 ident: bib17 article-title: Binding of Norwalk virus-like particles to ABH histo-blood group antigens is blocked by antisera from infected human volunteers or experimentally vaccinated mice publication-title: J. Virol. – volume: 23 year: 2022 ident: bib41 article-title: Replication of human norovirus in mice after antibiotic-mediated intestinal bacteria depletion publication-title: Int. J. Mol. Sci. – volume: 90 start-page: 5855 year: 2016 end-page: 5859 ident: bib42 article-title: Human norovirus interactions with histo-blood group antigens and human milk oligosaccharides publication-title: J. Virol. – volume: 7 year: 2012 ident: bib36 article-title: Disruption of the human gut microbiota following norovirus infection publication-title: PLoS One – volume: 48 year: 2022 ident: bib44 article-title: Recent developments in norovirus interactions with bacteria publication-title: Curr. Opin. Food Sci. – volume: 69 start-page: 1510 year: 2020 end-page: 1519 ident: bib49 article-title: Interaction between drugs and the gut microbiome publication-title: Gut – volume: 6 year: 2021 ident: bib12 article-title: New insights and enhanced human norovirus cultivation in human intestinal enteroids publication-title: mSphere – volume: 406 year: 2023 ident: bib54 article-title: Pseudomonas composti isolate from oyster digestive tissue specifically binds with norovirus GII.6 via Psl extracellular polysaccharide publication-title: Int. J. Food Microbiol. – volume: 15 start-page: 631 year: 2023 ident: bib32 article-title: Identification of potential proteinaceous ligands of GI.1 norovirus in Pacific oyster tissues publication-title: Viruses-Basel. – volume: 353 start-page: 1387 year: 2016 end-page: 1393 ident: bib11 article-title: Replication of human noroviruses in stem cell-derived human enteroids publication-title: Science – volume: 108 start-page: 5354 year: 2011 end-page: 5359 ident: bib19 article-title: Microbiota regulates immune defense against respiratory tract influenza A virus infection publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 14 start-page: 170 year: 2022 end-page: 177 ident: bib33 article-title: Occurrence of norovirus, rotavirus, hepatitis a virus, and enterovirus in berries in Argentina publication-title: Food Environ. Virol. – volume: 80 start-page: 10372 year: 2006 end-page: 10381 ident: bib7 article-title: Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs publication-title: J. Virol. – volume: 22 start-page: 9474 year: 2021 ident: bib50 article-title: Chemotherapy-induced intestinal microbiota dysbiosis impairs mucosal homeostasis by modulating toll-like receptor signaling pathways publication-title: Int. J. Mol. Sci. – volume: 10 start-page: 39 year: 2021 ident: bib39 article-title: PRISMA-S: an extension to the PRISMA statement for reporting literature searches in systematic reviews publication-title: Syst. Rev. – volume: 12 start-page: 607 year: 2019 ident: bib1 article-title: Characterization of human norovirus binding to gut-Associated bacterial ligands publication-title: BMC Res. Notes – volume: 7 year: 2017 ident: bib40 article-title: Relevance of secretor status genotype and microbiota composition in susceptibility to rotavirus and norovirus infections in humans publication-title: Sci. Rep. – volume: 109 start-page: 106881 year: 2020 ident: bib9 article-title: Inhibitory effect of lactic acid bacteria isolated from kimchi against murine norovirus publication-title: Food Control – volume: 87 start-page: 9441 year: 2013 end-page: 9451 ident: bib34 article-title: Histo-blood group antigen-like substances of human enteric bacteria as specific adsorbents for human noroviruses publication-title: J. Virol. – volume: 11 year: 2020 ident: bib37 article-title: The role of the gut microbiome in resisting norovirus infection as revealed by a human challenge study publication-title: mBio – volume: 41 start-page: 51 year: 1999 end-page: 57 ident: bib10 article-title: Inactivation of feline calicivirus, a Norwalk virus surrogate publication-title: J. Hosp. Infect. – volume: 12 year: 2021 ident: bib53 article-title: Effect of direct viral-bacterial interactions on the removal of norovirus from lettuce publication-title: Front. Microbiol. – volume: 346 start-page: 755 year: 2014 end-page: 759 ident: bib20 article-title: Enteric bacteria promote human and mouse norovirus infection of B cells publication-title: Science – volume: 12 start-page: 28 year: 2020 end-page: 34 ident: bib43 article-title: Secretor status is associated with susceptibility to disease in a large GII.6 norovirus foodborne outbreak publication-title: Food Environ. Virol. – volume: 382 start-page: 115 year: 2008 end-page: 123 ident: bib45 article-title: Noroviral P particle: structure, function and applications in virus–host interaction publication-title: Virology – volume: 13 year: 2022 ident: bib5 article-title: Bacterial extracellular vesicles control murine norovirus infection through modulation of antiviral immune responses publication-title: Front. Immunol. – volume: 185 start-page: 1335 year: 2002 end-page: 1337 ident: bib18 article-title: Norwalk virus infection and disease is associated with ABO histo-blood group type publication-title: J. Infect. Dis. – volume: 210 start-page: 171 year: 2014 end-page: 182 ident: bib46 article-title: Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity publication-title: JID (J. Infect. Dis.) – volume: 78 year: 2020 ident: bib48 article-title: Factors affecting early-life intestinal microbiota development publication-title: Nutrition – volume: 185 start-page: 1335 year: 2002 ident: 10.1016/j.fm.2023.104456_bib18 article-title: Norwalk virus infection and disease is associated with ABO histo-blood group type publication-title: J. Infect. Dis. doi: 10.1086/339883 – volume: 162 start-page: 3511 year: 2017 ident: 10.1016/j.fm.2023.104456_bib56 article-title: Study of the association between histo-blood group antigens and norovirus infection in Chinese children publication-title: Arch. Virol. doi: 10.1007/s00705-017-3494-y – volume: 7 start-page: 1699 year: 2016 ident: 10.1016/j.fm.2023.104456_bib23 article-title: High protective efficacy of probiotics and rice bran against human norovirus infection and diarrhea in gnotobiotic pigs publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01699 – volume: 109 start-page: 106881 year: 2020 ident: 10.1016/j.fm.2023.104456_bib9 article-title: Inhibitory effect of lactic acid bacteria isolated from kimchi against murine norovirus publication-title: Food Control doi: 10.1016/j.foodcont.2019.106881 – volume: 162 start-page: 37 year: 2013 ident: 10.1016/j.fm.2023.104456_bib26 article-title: Pressure inactivation of Tulane virus, a candidate surrogate for human norovirus and its potential application in food industry publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2012.12.016 – volume: 15 issue: 9 year: 2019 ident: 10.1016/j.fm.2023.104456_bib47 article-title: A robust human norovirus replication model in zebrafish larvae publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1008009 – volume: 82 start-page: 2966 year: 2016 ident: 10.1016/j.fm.2023.104456_bib14 article-title: Recognition of histo-blood group antigen-like carbohydrates in lettuce by human GII.4 norovirus publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.04096-15 – volume: 15 start-page: 631 year: 2023 ident: 10.1016/j.fm.2023.104456_bib32 article-title: Identification of potential proteinaceous ligands of GI.1 norovirus in Pacific oyster tissues publication-title: Viruses-Basel. doi: 10.3390/v15030631 – volume: 7 year: 2012 ident: 10.1016/j.fm.2023.104456_bib36 article-title: Disruption of the human gut microbiota following norovirus infection publication-title: PLoS One doi: 10.1371/journal.pone.0048224 – volume: 113 start-page: 6248 year: 2016 ident: 10.1016/j.fm.2023.104456_bib16 article-title: Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1605575113 – volume: 48 year: 2022 ident: 10.1016/j.fm.2023.104456_bib44 article-title: Recent developments in norovirus interactions with bacteria publication-title: Curr. Opin. Food Sci. – volume: 317 year: 2020 ident: 10.1016/j.fm.2023.104456_bib30 article-title: Culturable bacteria resident on lettuce might contribute to accumulation of human noroviruses publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2019.108492 – volume: 14 start-page: 170 year: 2022 ident: 10.1016/j.fm.2023.104456_bib33 article-title: Occurrence of norovirus, rotavirus, hepatitis a virus, and enterovirus in berries in Argentina publication-title: Food Environ. Virol. doi: 10.1007/s12560-022-09518-z – volume: 87 start-page: 9441 year: 2013 ident: 10.1016/j.fm.2023.104456_bib34 article-title: Histo-blood group antigen-like substances of human enteric bacteria as specific adsorbents for human noroviruses publication-title: J. Virol. doi: 10.1128/JVI.01060-13 – volume: 87 issue: 18 year: 2021 ident: 10.1016/j.fm.2023.104456_bib55 article-title: Oyster heat shock protein 70 plays a role in binding of human noroviruses publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00790-21 – volume: 11 year: 2020 ident: 10.1016/j.fm.2023.104456_bib37 article-title: The role of the gut microbiome in resisting norovirus infection as revealed by a human challenge study publication-title: mBio doi: 10.1128/mBio.02634-20 – volume: 12 year: 2021 ident: 10.1016/j.fm.2023.104456_bib53 article-title: Effect of direct viral-bacterial interactions on the removal of norovirus from lettuce publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.731379 – volume: 79 start-page: 378 year: 2011 ident: 10.1016/j.fm.2023.104456_bib38 article-title: Virucidal activity of different alcohols against murine norovirus, a surrogate of human norovirus publication-title: J. Hosp. Infect. doi: 10.1016/j.jhin.2011.04.029 – volume: 1133 start-page: 521 year: 2015 ident: 10.1016/j.fm.2023.104456_bib4 article-title: Natural microbiota of raspberries (Rubus idaeus) and strawberries (Fragaria x ananassa): microbial survey, bacterial isolation and identification, and biofilm characterization publication-title: 11th International Rubus and Ribes Symposium – volume: 382 start-page: 115 year: 2008 ident: 10.1016/j.fm.2023.104456_bib45 article-title: Noroviral P particle: structure, function and applications in virus–host interaction publication-title: Virology doi: 10.1016/j.virol.2008.08.047 – volume: 14 start-page: 1596 year: 2022 ident: 10.1016/j.fm.2023.104456_bib31 article-title: Glucose reduces norovirus binding to Enterobacter cloacae and alters gene expression of bacterial surface structures in a growth phase dependent manner publication-title: Viruses doi: 10.3390/v14081596 – volume: 14 start-page: 1395 issue: 7 year: 2022 ident: 10.1016/j.fm.2023.104456_bib6 article-title: Gut microbiome changes occurring with norovirus infection and recovery in infants enrolled in a longitudinal birth cohort in Leon publication-title: Nicaragua. Viruses. doi: 10.3390/v14071395 – volume: 41 start-page: 51 year: 1999 ident: 10.1016/j.fm.2023.104456_bib10 article-title: Inactivation of feline calicivirus, a Norwalk virus surrogate publication-title: J. Hosp. Infect. doi: 10.1016/S0195-6701(99)90037-3 – volume: 210 start-page: 171 year: 2014 ident: 10.1016/j.fm.2023.104456_bib46 article-title: Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity publication-title: JID (J. Infect. Dis.) doi: 10.1093/infdis/jiu037 – volume: 353 start-page: 1387 year: 2016 ident: 10.1016/j.fm.2023.104456_bib11 article-title: Replication of human noroviruses in stem cell-derived human enteroids publication-title: Science doi: 10.1126/science.aaf5211 – volume: 9 year: 2022 ident: 10.1016/j.fm.2023.104456_bib27 article-title: Determination of antiviral mechanism of centenarian gut-derived Limosilactobacillus fermentum against norovirus publication-title: Front. Nutr. – volume: 6 year: 2016 ident: 10.1016/j.fm.2023.104456_bib24 article-title: Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs publication-title: Sci. Rep. doi: 10.1038/srep25017 – volume: 12 start-page: 607 year: 2019 ident: 10.1016/j.fm.2023.104456_bib1 article-title: Characterization of human norovirus binding to gut-Associated bacterial ligands publication-title: BMC Res. Notes doi: 10.1186/s13104-019-4669-2 – volume: 406 year: 2023 ident: 10.1016/j.fm.2023.104456_bib54 article-title: Pseudomonas composti isolate from oyster digestive tissue specifically binds with norovirus GII.6 via Psl extracellular polysaccharide publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2023.110369 – volume: 147 start-page: 1468S year: 2017 ident: 10.1016/j.fm.2023.104456_bib51 article-title: Factors influencing the gut microbiota, inflammation, and type 2 diabetes publication-title: J. Nutr. doi: 10.3945/jn.116.240754 – volume: 80 start-page: 10372 year: 2006 ident: 10.1016/j.fm.2023.104456_bib7 article-title: Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs publication-title: J. Virol. doi: 10.1128/JVI.00809-06 – volume: 7 year: 2017 ident: 10.1016/j.fm.2023.104456_bib40 article-title: Relevance of secretor status genotype and microbiota composition in susceptibility to rotavirus and norovirus infections in humans publication-title: Sci. Rep. doi: 10.1038/srep45559 – volume: 111 start-page: 76 year: 2021 ident: 10.1016/j.fm.2023.104456_bib52 article-title: Intestinal microbiota profiles in infants with acute gastroenteritis caused by rotavirus and norovirus infection: a prospective cohort study publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2021.08.024 – volume: 9 start-page: 548 year: 2003 ident: 10.1016/j.fm.2023.104456_bib29 article-title: Human susceptibility and resistance to Norwalk virus infection publication-title: Nat. Med. doi: 10.1038/nm860 – volume: 11 issue: 2 year: 2016 ident: 10.1016/j.fm.2023.104456_bib8 article-title: Comparing apples and oranges?: Next generation sequencing and its impact on microbiome analysis publication-title: PLoS One doi: 10.1371/journal.pone.0148028 – volume: 13 year: 2022 ident: 10.1016/j.fm.2023.104456_bib5 article-title: Bacterial extracellular vesicles control murine norovirus infection through modulation of antiviral immune responses publication-title: Front. Immunol. doi: 10.3389/fimmu.2022.909949 – volume: 346 start-page: 755 year: 2014 ident: 10.1016/j.fm.2023.104456_bib20 article-title: Enteric bacteria promote human and mouse norovirus infection of B cells publication-title: Science doi: 10.1126/science.1257147 – volume: 10 start-page: 39 year: 2021 ident: 10.1016/j.fm.2023.104456_bib39 article-title: PRISMA-S: an extension to the PRISMA statement for reporting literature searches in systematic reviews publication-title: Syst. Rev. doi: 10.1186/s13643-020-01542-z – volume: 78 year: 2020 ident: 10.1016/j.fm.2023.104456_bib48 article-title: Factors affecting early-life intestinal microbiota development publication-title: Nutrition doi: 10.1016/j.nut.2020.110812 – volume: 22 start-page: 9474 year: 2021 ident: 10.1016/j.fm.2023.104456_bib50 article-title: Chemotherapy-induced intestinal microbiota dysbiosis impairs mucosal homeostasis by modulating toll-like receptor signaling pathways publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22179474 – volume: 12 start-page: 28 year: 2020 ident: 10.1016/j.fm.2023.104456_bib43 article-title: Secretor status is associated with susceptibility to disease in a large GII.6 norovirus foodborne outbreak publication-title: Food Environ. Virol. doi: 10.1007/s12560-019-09410-3 – volume: 11 issue: 1 year: 2022 ident: 10.1016/j.fm.2023.104456_bib35 article-title: Interaction with mammalian enteric viruses alters outer membrane vesicle production and content by commensal bacteria publication-title: J. Extracell. Vesicles doi: 10.1002/jev2.12172 – volume: 76 start-page: 12335 year: 2002 ident: 10.1016/j.fm.2023.104456_bib17 article-title: Binding of Norwalk virus-like particles to ABH histo-blood group antigens is blocked by antisera from infected human volunteers or experimentally vaccinated mice publication-title: J. Virol. doi: 10.1128/JVI.76.23.12335-12343.2002 – volume: 5 start-page: 84 year: 2020 ident: 10.1016/j.fm.2023.104456_bib15 article-title: The intestinal regionalization of acute norovirus infection is regulated by the microbiota via bile acid-mediated priming of type III interferon publication-title: Nat Microbiol doi: 10.1038/s41564-019-0602-7 – volume: 100 start-page: 1530 year: 2019 ident: 10.1016/j.fm.2023.104456_bib25 article-title: Enhanced GII.4 human norovirus infection in gnotobiotic pigs transplanted with a human gut microbiota publication-title: J. Gen. Virol. doi: 10.1099/jgv.0.001336 – volume: 12 issue: 3 year: 2017 ident: 10.1016/j.fm.2023.104456_bib2 article-title: Human norovirus binding to select bacteria representative of the human gut microbiota publication-title: PLoS One doi: 10.1371/journal.pone.0173124 – volume: 69 start-page: 1510 year: 2020 ident: 10.1016/j.fm.2023.104456_bib49 article-title: Interaction between drugs and the gut microbiome publication-title: Gut doi: 10.1136/gutjnl-2019-320204 – volume: 4 start-page: 331 year: 2016 ident: 10.1016/j.fm.2023.104456_bib13 article-title: An examination of co-infection in acute gastroenteritis and histo-blood group antigens leading to viral infection susceptibility publication-title: Biomedical Reports doi: 10.3892/br.2016.585 – volume: 196 start-page: 1780 year: 2016 ident: 10.1016/j.fm.2023.104456_bib21 article-title: Differential effects of Escherichia coli Nissle and Lactobacillus rhamnosus Strain GG on human rotavirus binding, infection, and B cell immunity publication-title: J. Immunol. doi: 10.4049/jimmunol.1501705 – volume: 6 issue: 1 year: 2021 ident: 10.1016/j.fm.2023.104456_bib12 article-title: New insights and enhanced human norovirus cultivation in human intestinal enteroids publication-title: mSphere doi: 10.1128/mSphere.01136-20 – volume: 6 year: 2016 ident: 10.1016/j.fm.2023.104456_bib22 article-title: Antiviral effect of Vitamin A on norovirus infection via modulation of the gut microbiome publication-title: Sci. Rep. – volume: 108 start-page: 5354 year: 2011 ident: 10.1016/j.fm.2023.104456_bib19 article-title: Microbiota regulates immune defense against respiratory tract influenza A virus infection publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1019378108 – volume: 23 year: 2022 ident: 10.1016/j.fm.2023.104456_bib41 article-title: Replication of human norovirus in mice after antibiotic-mediated intestinal bacteria depletion publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms231810643 – volume: 90 start-page: 5855 year: 2016 ident: 10.1016/j.fm.2023.104456_bib42 article-title: Human norovirus interactions with histo-blood group antigens and human milk oligosaccharides publication-title: J. Virol. doi: 10.1128/JVI.00317-16 – volume: 10 start-page: 130 year: 2020 ident: 10.1016/j.fm.2023.104456_bib3 article-title: Extrinsic factors influencing gut microbes, the immediate consequences and restoring eubiosis publication-title: Amb. Express doi: 10.1186/s13568-020-01066-8 – volume: 17 year: 2022 ident: 10.1016/j.fm.2023.104456_bib28 article-title: Clinical significance and intestinal microbiota composition in immunocompromised children with norovirus gastroenteritis publication-title: PLoS One |
SSID | ssj0011539 |
Score | 2.428057 |
SecondaryResourceType | review_article |
Snippet | Human norovirus (HuNoV) is an important foodborne virus, which causes non-bacterial acute gastroenteritis and is associated with a high disease burden.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 104456 |
SubjectTerms | burden of disease Caliciviridae Infections food microbiology Gastroenteritis Gastrointestinal Microbiome gene expression Human norovirus Humans Intestinal microbes intestinal microorganisms Intestines Murine norovirus Norovirus Norovirus - genetics pathogenicity Virus-bacteria interaction Virus-like particles viruses |
Title | Interactions between human norovirus and intestinal microbiota/microbes: A scoping review |
URI | https://dx.doi.org/10.1016/j.fm.2023.104456 https://www.ncbi.nlm.nih.gov/pubmed/38225056 https://www.proquest.com/docview/2915570768 https://www.proquest.com/docview/3153174823 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7Boqpcqpa2sH0gV-qlhzSJHT_S2woVbVuVS4tET5HjTKRFkEVk98CF3844dlZCAg69JZEdWTMez4xn5huAz6Tic48SntjcluSg6DaxyPOEc2OURC3cgFPw-0TNT4ufZ_JsC47GWhifVhnP_nCmD6d1_JJGaqZXi0X6h5TfEEgjI9rD6slt2OGiVHICO7Mfv-Ynm2ACCXUZ0Dh9ETXPYrQypHm1vhydCx_rLHwX64e102PW56CFjl_Ci2g-sllY4SvYwm4PnoWGkjd78HysM-5fw7_hsi_ULfQs5mOxoScf65b-JuF63TPbNcxDRpCk-x9fLgIw08qm4RH7b2zGfO0K6TgWCl3ewOnx979H8yQ2UkgcOaCrBE2GSqOU2qoSjVB1q_Pc6cYK5G2TSWuFtFyJ1ilnJTnbBTpZG0TiZGa1eAuTbtnhATAlnMG85ZkzbWEaY7Eua2GM0w5dY5oppCMBKxdRxn2zi4tqTCc7J_GpPMmrQPIpfNnMuAoIG0-MFSNPqnu7pCIF8MSsTyP7KhIeHxGxHS7XfcU9Or72wcjHxwjaPuS2GS6msB94v1mnIPPKm5Dv_mtd72GX3oqQPvkBJqvrNX4kE2dVH8L219v8MG7kOyky-So |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT90wDLcYaGIXNGCwN_aRSVx2KH1NmiaPG0JDbxtwGUjsFKWpKz209SH63mGX_e2zm_ZJSIPDblXrVJGd2E5s_wxwSCY-Y5TwxGd-QgcUUyceZZZIaW2h0ajQ4RRcXBbT6_zrjb5Zg9OhFobTKnvdH3V6p637N2nPzfRuNku_k_HrAmnkRDOsnn4GG7lWhvP6jv6s8jzI4-naiTF1wuR9rDImedVcjC4VRzpz7mH9b9v0mO_Z2aCzl7DVO4_iJM5vG9aw2YHnsZ3k7x3YHKqM21340V31xaqFVvTZWKLryCeaOd8j3C9b4ZtKMGAE7XP-8a9ZhGVa-DQ-YnssTgRXrpCFE7HM5RVcn32-Op0mfRuFJNDxc5GgHWNhUGvjiwlaVZS1ybJgKq9Q1tVYe6-0l4WqQxG8pqN2jkGXFpHkOPZG7cF6M2_wNYhCBYtZLcfB1rmtrMdyUiprgwkYKluNIB0Y6EKPMc6tLn66IZnsljaPY5a7yPIRfFqNuIv4Gk_QqkEm7sEacaT-nxj1cRCfo63D8RDf4HzZOsnY-IZDkY_TKFo-dGizUo1gP8p-NU9FzhU7kG_-a14fYHN6dXHuzr9cfjuAF_Qlj4mUb2F9cb_Ed-TsLMr33WL-C0Ro-fU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interactions+between+human+norovirus+and+intestinal+microbiota%2Fmicrobes%3A+A+scoping+review&rft.jtitle=Food+microbiology&rft.au=Yang%2C+Yaqi&rft.au=An%2C+Ran&rft.au=Lyu%2C+Chenang&rft.au=Wang%2C+Dapeng&rft.date=2024-05-01&rft.issn=1095-9998&rft.eissn=1095-9998&rft.volume=119&rft.spage=104456&rft_id=info:doi/10.1016%2Fj.fm.2023.104456&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-0020&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-0020&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-0020&client=summon |