Elastic analysis of a half-plane containing an inclusion and a void using a mixed volume and boundary integral equation method

A mixed volume and boundary integral equation method is used to calculate the plane elastostatic field in an isotropic elastic half-plane containing an isotropic or anisotropic inclusion and a void subject to remote loading parallel to a traction-free boundary. A detailed analysis of the stress fiel...

Full description

Saved in:
Bibliographic Details
Published inEngineering analysis with boundary elements Vol. 35; no. 7; pp. 915 - 924
Main Authors Lee, J.K., Mal, A.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.07.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A mixed volume and boundary integral equation method is used to calculate the plane elastostatic field in an isotropic elastic half-plane containing an isotropic or anisotropic inclusion and a void subject to remote loading parallel to a traction-free boundary. A detailed analysis of the stress field is carried out for three different geometries of the problem. It is demonstrated that the method is very accurate and effective for investigating local stresses in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions and multiple voids.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0955-7997
1873-197X
DOI:10.1016/j.enganabound.2011.02.004